92 research outputs found

    Impact of Chitosan-Based Foliar Application on the Phytochemical Content and the Antioxidant Activity in Hemp (Cannabis sativa L.) Inflorescences

    Get PDF
    In the present study, the phytochemical content and the antioxidant activity in the inflorescences of the monoecious hemp cultivar Codimono grown in southern Italy were assessed, and their elicitation was induced by foliar spray application of 50 mg/L and 250 mg/L of chitosan (CHT) at three different molecular weights (low, CHT L; medium, CHT M; high CHT H). The analysis of the phytochemical profile confirmed that cannabinoids were the most abundant class (54.2%), followed by flavonoids (40.3%), tocopherols (2.2%), phenolic acids (1.9%), and carotenoids (1.4%). Cannabinoids were represented almost exclusively by cannabidiol, whereas cannabigerol and Δ9-tetrahydrocannabinol were detected at very low levels (the latter was below the legal limit of 0.3%). The most abundant flavonoids were orientin and vitexin, whereas tocopherols were mainly represented by α-tocopherol. The antioxidant activity was found to be positively correlated with flavonoids and tocopherols. Statistical analysis revealed that the CHT treatments significantly affected the phytochemical content and the antioxidant activity of hemp inflorescences. Notably, a significant increase in the total phenolic content (from +36% to +69%), the α-tocopherol (from +45% to +75%) and β+γ-tocopherol (from +35% to +82%) contents, and the ABTS radical scavenging activity (from +12% to +28%) was induced by all the CHT treatments. In addition, treatments with CHT 50 solutions induced an increase in the total flavonoid content (from +12% to +27%), as well as in the vitexin (from +17% to +20%) and orientin (from +20% to +30%) contents. Treatment with CHT 50 L almost always resulted in the greatest increases. Overall, our findings indicated that CHT could be used as a low-cost and environmentally safe elicitor to improve the health benefits and the economic value of hemp inflorescences, thus promoting their employment in the food, pharmaceutical, nutraceutical, and cosmetic supply chains

    Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates

    Full text link
    We report a detailed magnetic study of a new type of self-organized nanowires disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507 (2007)]. The templates, prepared on sapphire wafers in a kinetically-limited regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide wires located at the bottom of the grooves. The effect of capping layers (Mo, Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was studied. Significant discrepancies with figures known for thin flat films are evidenced and discussed in terms of step anisotropy and strain-dependent surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular isosceles cross-section have also been calculated, to estimate the contribution of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the interface element was used to tune the blocking temperature of the wires, here from 50K to 200 K

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies

    Get PDF
    Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μB. Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies

    Three-dimensional field models for reverse-biased p-n junctions.

    Get PDF
    In order to obtain reliable quantitative information on the electrostatic field associated with reverse-biased p-n junctions and on the distribution of dopants, the physics of the so-called ''dead layer'' and the influence of charged oxide layers are of paramount importance. To this purpose, experimental observations near the edge of a TEM sample can be useful. In these conditions, however, phase computations required to interpret the experimental results are very challenging as the problem is intrinsically three-dimensional. In order to cope with this problem, a mixed analytical-numerical approach is presented and discussed
    • …
    corecore