8,038 research outputs found

    A Ballistic Graphene Cooper Pair Splitter

    Get PDF
    We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor and the normal metal/graphene/normal metal junctions. In this case, the electronic transport through one junction can be tuned by an applied bias along the other. We observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by using a modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam splitter model

    AGN variability at hard X-rays

    Full text link
    We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert galaxies, a considerable amount of INTEGRAL data have already been accumulated and are publicly available, allowing detailed spectral variability studies at hard X-rays.Comment: 6 pages, 6 figures. Accepted for publication on PoS (contribution PoS(extremesky2009)031), proceedings of "The Extreme sky: Sampling the Universe above 10 keV", held in Otranto (Italy) in October 200

    Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    Get PDF
    Thermoelectric effects result from the coupling of charge and heat transport, and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron-hole symmetry, which is usually quite small in metal structures, and vanishes at low temperatures. We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the depencence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigeratorsComment: 11 pages, submitted to Beilstein Journal of Nanotechnolog

    Compton processes in the bright AGN MCG+8-11-11

    Full text link
    We present preliminary results on the hard X-ray emission properties of the Seyfert 1.5 galaxy MCG+8-11-11 as observed by INTEGRAL and SWIFT. All the INTEGRAL IBIS/ISGRI data available up to October 2009 have been analyzed together with two SWIFT/XRT snapshot observations performed in August and October 2009, quasi-simultaneously to INTEGRAL pointed observations of MCG+8-11-11. No correlation is observed between the hard X-ray flux and the spectral slope, while the position of the high-energy cut-off is found to have varied during the INTEGRAL observations. This points to a change in the temperature of the Comptonising medium from a minimum value of kT = 30-50 keV to values larger than 100-150 keV. There is no significant detection of Compton reflection, with a 3 sigma upper limit of R < 0.2, and no line has been detected at 112 keV, as previously claimed from HEAT observations (112 keV flux F < 2.4e-4 ph/cm^2/s). The variability behaviour of MCG+8-11-11 is found to be similar to that shown by IC 4329A, with different temperatures of the electron plasma for similar flux levels of the source, while other bright Seyfert galaxies present different variability patterns at hard X-rays, with spectral changes correlated to flux variations (e.g. NGC 4151).Comment: 6 pages, 4 figures. Accepted for publication on PoS (contribution PoS(INTEGRAL 2010)077), proceedings of the 8th INTEGRAL Workshop "The Restless Gamma-ray Universe" (September 2010, Dublin, Ireland

    BeppoSAX observations of the quasar Markarian 205

    Full text link
    We present the first BeppoSAX observation (0.1 to 220 keV) of the quasar Mrk 205. We have searched for the unusual Fe line profile claimed in the XMM-Newton spectrum which has been widely discussed in recent literature. We find no evidence for a broad, ionized Fe line component in our data. We detect for the first time a Compton hump in this object. Besides, when this component is included in the fit, the line strength diminishes, in agreement with a recent re-analysis of the XMM-Newton data, but with better constraints on the reflection component thanks to the PDS instrument (15-220 keV). We interpret this fact as another indication for illumination of a distant and cold material rather than reprocessing in the highly ionized inner parts of an accretion disk. We cannot constrain the presence of a high energy cutoff but we confirm the existence of a variable soft excess (one year timescale).Comment: 13 pages, 12 figures, accepted for publication in A&

    Thomas von Aquin und die Neuzeit

    Get PDF

    The Hard X-ray Emission of Cen A

    Full text link
    The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission processes. Here we study the hard X-ray emission as measured by INTEGRAL in the 3-1000 keV energy range, in order to distinguish between a thermal and non-thermal inverse Compton process. The hard X-ray spectrum of Cen A shows a significant cut-off at energies Ec = 434 (+106 -73) keV with an underlying power law of photon index 1.73 +- 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kT = 206+-62 keV within the optically thin corona with Compton parameter y = 0.42 (+0.09 -0.06). The reflection component is significant at the 1.9 sigma level with R = 0.12 (+0.09 -0.10), and a reflection strength R>0.3 can be excluded on a 3 sigma level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in the range f(3-30 keV) = (1.2 - 9.2)e-10 erg/cm**2/s, NH = (7 - 16)e22 1/cm**2, and photon index 1.75 - 1.87. Extending the cut-off power law or the Comptonisation model to the gamma-ray range shows that they cannot account for the high-energy emission. On the other hand, also a broken or curved power law model can represent the data, therefore a non-thermal origin of the X-ray to GeV emission cannot be ruled out. The analysis of the SPI data provides no sign of significant emission from the radio lobes and gives a 3 sigma upper limit of f(40-1000 keV) < 0.0011 ph/cm**2/s. While gamma-rays, as detected by CGRO and Fermi, are caused by non-thermal (jet) processes, the main process in the hard X-ray emission of Cen A is still not unambiguously determined, being either dominated by thermal inverse Compton emission, or by non-thermal emission from the base of the jet.Comment: 8 pages, 6 figures, accepted for publication in A&

    Sampling Distributions of Random Electromagnetic Fields in Mesoscopic or Dynamical Systems

    Full text link
    We derive the sampling probability density function (pdf) of an ideal localized random electromagnetic field, its amplitude and intensity in an electromagnetic environment that is quasi-statically time-varying statistically homogeneous or static statistically inhomogeneous. The results allow for the estimation of field statistics and confidence intervals when a single spatial or temporal stochastic process produces randomization of the field. Results for both coherent and incoherent detection techniques are derived, for Cartesian, planar and full-vectorial fields. We show that the functional form of the sampling pdf depends on whether the random variable is dimensioned (e.g., the sampled electric field proper) or is expressed in dimensionless standardized or normalized form (e.g., the sampled electric field divided by its sampled standard deviation). For dimensioned quantities, the electric field, its amplitude and intensity exhibit different types of Bessel KK sampling pdfs, which differ significantly from the asymptotic Gauss normal and χ2p(2)\chi^{(2)}_{2p} ensemble pdfs when ν\nu is relatively small. By contrast, for the corresponding standardized quantities, Student tt, Fisher-Snedecor FF and root-FF sampling pdfs are obtained that exhibit heavier tails than comparable Bessel KK pdfs. Statistical uncertainties obtained from classical small-sample theory for dimensionless quantities are shown to be overestimated compared to dimensioned quantities. Differences in the sampling pdfs arising from de-normalization versus de-standardization are obtained.Comment: 12 pages, 15 figures, accepted for publication in Phys. Rev. E, minor typos correcte

    Microfabricated high-finesse optical cavity with open access and small volume

    No full text
    We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network
    corecore