1,073 research outputs found
Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface
The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is
investigated by scanning tunneling microscopy (STM). Single B acceptors are
identified due to their characteristic voltage-dependent contrast which is
explained by a local energetic shift of the electronic density of states caused
by the Coulomb potential of the negatively charged acceptor. In addition,
detailed analysis of the STM images shows that apparently one orbital is
missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the
absence of a localized dangling-bond state. Scanning tunneling spectroscopy
confirms a strongly altered density of states at the B atom due to the
different electronic structure of B compared to Si.Comment: 6 pages, 7 figure
Collinear helium under periodic driving: stabilization of the asymmetric stretch orbit
The collinear eZe configuration of helium, with the electrons on opposite
sides of the nucleus, is studied in the presence of an external electromagnetic
(laser or microwave) field. We show that the classically unstable "asymmetric
stretch" orbit, on which doubly excited intrashell states of helium with
maximum interelectronic angle are anchored, can be stabilized by means of a
resonant driving where the frequency of the electromagnetic field equals the
frequency of Kepler-like oscillations along the orbit. A static magnetic field,
oriented parallel to the oscillating electric field of the driving, can be used
to enforce the stability of the configuration with respect to deviations from
collinearity. Quantum Floquet calculations within a collinear model of the
driven two-electron atom reveal the existence of nondispersive wave packets
localized on the stabilized asymmetric stretch orbit, for double excitations
corresponding to principal quantum numbers of the order of N > 10.Comment: 13 pages, 12 figure
Superstrings with Intrinsic Torsion
We systematically analyse the necessary and sufficient conditions for the
preservation of supersymmetry for bosonic geometries of the form R^{1,9-d}
\times M_d, in the common NS-NS sector of type II string theory and also type
I/heterotic string theory. The results are phrased in terms of the intrinsic
torsion of G-structures and provide a comprehensive classification of static
supersymmetric backgrounds in these theories. Generalised calibrations
naturally appear since the geometries always admit NS or type I/heterotic
fivebranes wrapping calibrated cycles. Some new solutions are presented. In
particular we find d=6 examples with a fibred structure which preserve N=1,2,3
supersymmetry in type II and include compact type I/heterotic geometries.Comment: 58 pages, LaTeX; v2: New section on solutions including an example
with N=3 supersymmetry and discussion of heterotic compactifications. Details
on conventions and references added. v3: added an explicit example of
non-integrable product structure in Appendix C; some typos fixe
FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY
The gravitini zero modes riding on top of the extreme Reissner-Nordstrom
black-hole solution of N=2 supergravity are shown to be normalizable. The
gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions
of N=4 supergravity are also given and found to have finite norms. These norms
are duality invariant. The finiteness and positivity of the norms in both cases
are found to be correlated with the Witten-Israel-Nester construction; however,
we have replaced the Witten condition by the pure-spin-3/2 constraint on the
gravitini. We compare our calculation of the norms with the calculations which
provide the moduli space metric for extreme black holes.
The action of the N=2 hypermultiplet with an off-shell central charge
describes the solitons of N=2 supergravity. This action, in the
Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly
supersymmetric.Comment: 18 pages, LaTe
Variations in water use by a mature mangrove of Avicennia germinans, French Guiana
In the tropical intertidal zones, little is known on water uptake by mangroves. Transpiration rates are generally measured at leaf level, but few studies exist on water use at tree or stand levels. The objective of this study was to measure sap flow in trees of different sizes to appreciate the range of variation in water use that may exist in a site dominated by 80% mature Avicennia germinans. The results showed that from the dry to the wet season the mean water use increased from 3.2 to 5.3 dm3 d−1 in small trees (DBH ∼ 13 cm), from 11.5 to 30.8 dm3 d−1 in medium trees (∼24 cm) and from 40.8 to 64.1 dm3 d−1 in large ones (∼45 cm). Sapwood remained active up to a depth of 8 cm with radial variations within the stem. Weak correlations were obtained with VPD and net radiation. This study confirmed that transpiration was larger under low levels of salinity. Water use at stand level (∼1900 living stems ha−1) was estimated to be in the range of 5.8 to 11.8 m3 ha−1 d−1 according to the season
Evidence of Final-State Suppression of High-p_T Hadrons in Au + Au Collisions Using d + Au Measurements at RHIC
Transverse momentum spectra of charged hadrons with 6 GeV/c have
been measured near mid-rapidity (0.2 1.4) by the PHOBOS experiment
at RHIC in Au + Au and d + Au collisions at . The spectra for different collision centralities are compared to collisions at the same energy. The resulting nuclear modification
factor for central Au + Au collisions shows evidence of strong suppression of
charged hadrons in the high- region ( GeV/c). In contrast, the d +
Au nuclear modification factor exhibits no suppression of the high-
yields. These measurements suggest a large energy loss of the high-
particles in the highly interacting medium created in the central Au + Au
collisions. The lack of suppression in d + Au collisions suggests that it is
unlikely that initial state effects can explain the suppression in the central
Au + Au collisions.Comment: 3 pages, 4 figures, International Europhysics Conference on High
Energy Physics EPS (July 17th-23rd 2003) in Aachen, German
D-brane Solitons in Supersymmetric Sigma-Models
Massive D=4 N=2 supersymmetric sigma models typically admit domain wall
(Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2
supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution
in which a string ends on a wall, and show that it has an effective realization
as a BIon of the D=4 super DBI-action. It is also shown to have a
time-dependent Q-kink-lump generalization which reduces to the Q-lump in a
limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric
sigma-model solitons are shown to be realized in M-theory as calibrated, or
`Q-calibrated', M5-branes in an M-monopole background.Comment: 16 pages, 3 figures, Late
Pulsar Timing and its Application for Navigation and Gravitational Wave Detection
Pulsars are natural cosmic clocks. On long timescales they rival the
precision of terrestrial atomic clocks. Using a technique called pulsar timing,
the exact measurement of pulse arrival times allows a number of applications,
ranging from testing theories of gravity to detecting gravitational waves. Also
an external reference system suitable for autonomous space navigation can be
defined by pulsars, using them as natural navigation beacons, not unlike the
use of GPS satellites for navigation on Earth. By comparing pulse arrival times
measured on-board a spacecraft with predicted pulse arrivals at a reference
location (e.g. the solar system barycenter), the spacecraft position can be
determined autonomously and with high accuracy everywhere in the solar system
and beyond. We describe the unique properties of pulsars that suggest that such
a navigation system will certainly have its application in future astronautics.
We also describe the on-going experiments to use the clock-like nature of
pulsars to "construct" a galactic-sized gravitational wave detector for
low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the
current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks,
Springer Space Science Review
Au+Au Reactions at the AGS: Experiments E866 and E917
Particle production and correlation functions from Au+Au reactions have been
measured as a function of both beam energy (2-10.7AGeV) and impact parameter.
These results are used to probe the dynamics of heavy-ion reactions, confront
hadronic models over a wide range of conditions and to search for the onset of
new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
- …
