183 research outputs found

    Linking Classical and Quantum Key Agreement: Is There "Bound Information"?

    Get PDF
    After carrying out a protocol for quantum key agreement over a noisy quantum channel, the parties Alice and Bob must process the raw key in order to end up with identical keys about which the adversary has virtually no information. In principle, both classical and quantum protocols can be used for this processing. It is a natural question which type of protocols is more powerful. We prove for general states but under the assumption of incoherent eavesdropping that Alice and Bob share some so-called intrinsic information in their classical random variables, resulting from optimal measurements, if and only if the parties' quantum systems are entangled. In addition, we provide evidence that the potentials of classical and of quantum protocols are equal in every situation. Consequently, many techniques and results from quantum information theory directly apply to problems in classical information theory, and vice versa. For instance, it was previously believed that two parties can carry out unconditionally secure key agreement as long as they share some intrinsic information in the adversary's view. The analysis of this purely classical problem from the quantum information-theoretic viewpoint shows that this is true in the binary case, but false in general. More explicitly, bound entanglement, i.e., entanglement that cannot be purified by any quantum protocol, has a classical counterpart. This "bound intrinsic information" cannot be distilled to a secret key by any classical protocol. As another application we propose a measure for entanglement based on classical information-theoretic quantities.Comment: Accepted for Crypto 2000. 17 page

    The problem of mutually unbiased bases in dimension 6

    Get PDF
    We outline a discretization approach to determine the maximal number of mutually unbiased bases in dimension 6. We describe the basic ideas and introduce the most important definitions to tackle this famous open problem which has been open for the last 10 years. Some preliminary results are also listed

    Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL

    Get PDF
    Here, we provide evidence for a detrimental role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in neural death in T cell-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Clinical severity and neuronal apoptosis in brainstem motor areas were substantially reduced upon brain-specific blockade of TRAIL after induction of EAE through adoptive transfer of encephalitogenic T cells. Furthermore, TRAIL-deficient myelin-specific lymphocytes showed reduced encephalitogenicity when transferred to wild-type mice. Conversely, intracerebral delivery of TRAIL to animals with EAE increased clinical deficits, while naive mice were not susceptible to TRAIL. Using organotypic slice cultures as a model for living brain tissue, we found that neurons were susceptible to TRAIL-mediated injury induced by encephalitogenic T cells. Thus, in addition to its known immunoregulatory effects, the death ligand TRAIL contributes to neural damage in the inflamed brain

    Fidelity trade-off for finite ensembles of identically prepared qubits

    Full text link
    We calculate the trade-off between the quality of estimating the quantum state of an ensemble of identically prepared qubits and the minimum level of disturbance that has to be introduced by this procedure in quantum mechanics. The trade-off is quantified using two mean fidelities: the operation fidelity which characterizes the average resemblance of the final qubit state to the initial one, and the estimation fidelity describing the quality of the obtained estimate. We analyze properties of quantum operations saturating the achievability bound for the operation fidelity versus the estimation fidelity, which allows us to reduce substantially the complexity of the problem of finding the trade-off curve. The reduced optimization problem has the form of an eigenvalue problem for a set of tridiagonal matrices, and it can be easily solved using standard numerical tools.Comment: 26 pages, REVTeX, 2 figures. Few minor corrections, accepted for publication in Physical Review

    Quantum Distribution of Gaussian Keys with Squeezed States

    Full text link
    A continuous key distribution scheme is proposed that relies on a pair of canonically conjugate quantum variables. It allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature components of a single-mode electromagnetic field. The resulting quantum cryptographic information vs disturbance tradeoff is investigated for an individual attack based on the optimal continuous cloning machine. It is shown that the information gained by the eavesdropper then simply equals the information lost by the receiver.Comment: 5 pages, RevTe

    Regular black holes and black universes

    Get PDF
    We give a comparative description of different types of regular static, spherically symmetric black holes (BHs) and discuss in more detail their particular type, which we suggest to call black universes. The latter have a Schwarzschild-like causal structure, but inside the horizon there is an expanding Kantowski-Sachs universe and a de Sitter infinity instead of a singularity. Thus a hypothetic BH explorer gets a chance to survive. Solutions of this kind are naturally obtained if one considers static, spherically symmetric distributions of various (but not all) kinds of phantom matter whose existence is favoured by cosmological observations. It also looks possible that our Universe has originated from phantom-dominated collapse in another universe and underwent isotropization after crossing the horizon. An explicit example of a black-universe solution with positive Schwarzschild mass is discussed.Comment: 13 pages, 1 figure. 6 referenses and some discussion added, misprints correcte

    Dynamic orifice area variations in functional mitral regurgitation: In vivoreproduction and mechanistic insights

    Get PDF
    Aims: The spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7) are clinically characterized by progressive and severe ataxic symptoms, dysarthria, dysphagia, oculomotor impairments, pyramidal and extrapyramidal manifestations and sensory deficits. Although recent clinical studies reported additional disease signs suggesting involvement of the brainstem auditory system, this has never been studied in detail in SCA2, SCA3 or SCA7. Methods: We performed a detailed pathoanatomical investigation of unconventionally thick tissue sections through the auditory brainstem nuclei (that is, nucleus of the inferior colliculus, nuclei of the lateral lemniscus, superior olive, cochlear nuclei) and auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body, dorsal acoustic stria, cochlear portion of the vestibulocochlear nerve) of clinically diagnosed and genetically confirmed SCA2, SCA3 and SCA7 patients. Results: Examination of unconventionally thick serial brainstem sections stained for lipofuscin pigment and Nissl material revealed a consistent and widespread involvement of the auditory brainstem nuclei in the SCA2, SCA3 and SCA7 patients studied. Serial brainstem tissue sections stained for myelin showed loss of myelinated fibres in two of the auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body) in a subset of patients. Conclusions: The involvement of the auditory brainstem system offers plausible explanations for the auditory impairments detected in some of our and other SCA2, SCA3 and SCA7 patients upon bedside examination or neurophysiological investigation. However, further clinical studies are required to resolve the striking discrepancy between the consistent involvement of the brainstem auditory system observed in this study and the comparatively low frequency of reported auditory impairments in SCA2, SCA3 and SCA7 patients

    Entangled state quantum cryptography: Eavesdropping on the Ekert protocol

    Get PDF
    Using polarization-entangled photons from spontaneous parametric downconversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum non-demolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.Comment: 4 pages, 2 encapsulated postscript files, PRL (tentatively) accepte

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
    corecore