175 research outputs found

    Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching

    Get PDF
    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleachin

    Fluid Ontologies in the Search for MH370

    Get PDF
    This paper gives an account of the disappearance of Malaysian Airways Flight MH370 into the southern Indian Ocean in March 2014 and analyses the rare glimpses into remote ocean space this incident opened up. It follows the tenuous clues as to where the aeroplane might have come to rest after it disappeared from radar screens – seven satellite pings, hundreds of pieces of floating debris and six underwater sonic recordings – as ways of entering into and thinking about ocean space. The paper pays attention to and analyses this space on three registers – first, as a fluid, more-than-human materiality with particular properties and agencies; second, as a synthetic situation, a composite of informational bits and pieces scopically articulated and augmented; and third, as geopolitics, delineated by the protocols of international search and rescue. On all three registers – as matter, as data and as law – the ocean is shown to be ontologically fluid, a world defined by movement, flow and flux, posing intractable difficulties for human interactions with it

    Polychaete invader enhances resource utilization in a species-poor system

    Get PDF
    Ecosystem consequences of biodiversity change are often studied from a species loss perspective, while the effects of invasive species on ecosystem functions are rarely quantified. In this experimental study, we used isotope tracers to measure the incorporation and burial of carbon and nitrogen from a simulated spring phytoplankton bloom by communities of one to four species of deposit-feeding macrofauna found in the species-poor Baltic Sea. The recently invading polychaete Marenzelleriaarctia, which has spread throughout the Baltic Sea, grows more rapidly than the native species Monoporeia affinis, Pontoporeia femorata (both amphipods) and Macoma balthica (a bivalve), resulting in higher biomass increase (biomass production) in treatments including the polychaete. Marenzelleria incorporated and buried bloom material at rates similar to the native species. Multi-species treatments generally had higher isotope incorporation, indicative of utilization of bloom material, than expected from monoculture yields of the respective species. The mechanism behind this observed over-yielding was mainly niche complementarity in utilization of the bloom input, and was more evident in communities including the invader. In contrast, multi-species treatments had generally lower biomass increase than expected. This contrasting pattern suggests that there is little overlap in resource use of freshly deposited bloom material between Marenzelleria and the native species but it is likely that interference competition acts to dampen resulting community biomass. In conclusion, an invasive species can enhance incorporation and burial of organic matter from settled phytoplankton blooms, two processes fundamental for marine productivity

    A life course approach to injury prevention: a "lens and telescope" conceptual model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date.</p> <p>Methods</p> <p>The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course.</p> <p>Results</p> <p>A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time.</p> <p>Conclusions</p> <p>By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health.</p

    Corticotropin Releasing Factor-Induced CREB Activation in Striatal Neurons Occurs via a Novel Gβγ Signaling Pathway

    Get PDF
    The peptide corticotropin-releasing factor (CRF) was initially identified as a critical component of the stress response. CRF exerts its cellular effects by binding to one of two cognate G-protein coupled receptors (GPCRs), CRF receptor 1 (CRFR1) or 2 (CRFR2). While these GPCRs were originally characterized as being coupled to Gαs, leading to downstream activation of adenylyl cyclase (AC) and subsequent increases in cAMP, it has since become clear that CRFRs couple to and activate numerous other downstream signaling cascades. In addition, CRF signaling influences the activity of many diverse brain regions, affecting a variety of behaviors. One of these regions is the striatum, including the nucleus accumbens (NAc). CRF exerts profound effects on striatal-dependent behaviors such as drug addiction, pair-bonding, and natural reward. Recent data indicate that at least some of these behaviors regulated by CRF are mediated through CRF activation of the transcription factor CREB. Thus, we aimed to elucidate the signaling pathway by which CRF activates CREB in striatal neurons. Here we describe a novel neuronal signaling pathway whereby CRF leads to a rapid Gβγ- and MEK-dependent increase in CREB phosphorylation. These data are the first descriptions of CRF leading to activation of a Gβγ-dependent signaling pathway in neurons, as well as the first description of Gβγ activation leading to downstream CREB phosphorylation in any cellular system. Additionally, these data provide additional insight into the mechanisms by which CRF can regulate neuronal function

    Rhizosphere-mediated effects of the invasive grass Bromus tectorum L. and native Elymus elymoides on nitrogen cycling in Great Basin Desert soils

    Full text link
    Background and aims: There is evidence that the invasive grass Bromus tectorum can affect soil nitrogen (N) cycling, possibly leading to a positive plant-soil feedback. Rhizosphere priming of N mineralization could provide a mechanistic explanation for such a feedback. Methods: We conducted a greenhouse study to isolate rhizosphere effects on N cycling by the invasive annual grass, Bromus tectorum L., and the native perennial grass, Elymus elymoides (Raf.) Swezey, in invaded and uninvaded soils. We compared the rhizosphere priming effect (RPE) on N mineralization by species and the distribution of N in various pools by planting treatment and soil type. Results: B. tectorum had a negative RPE (−23 and −22&nbsp;% in invaded and uninvaded soils, respectively), while E. elymoides had no significant RPE. B. tectorum was more competitive over E. elymoides in invaded compared to uninvaded soil. Conclusions: B. tectorum had a negative effect on soil N availability via root-mediated processes, even though its growth and competitiveness increased in invaded soils. Positive plant-soil feedback effects of B. tectorum may be mediated by aboveground inputs rather than belowground and/or depend on site-specific conditions
    corecore