683 research outputs found
Deciphering the metabolic response of Mycobacterium tuberculosis to nitrogen stress.
Š 2015 John Wiley & Sons Ltd.A key component to the success of Mycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M. tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high-throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up-regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M. tuberculosis to that in non-pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging
Deciphering the response of Mycobacterium smegmatis to nitrogen stress using bipartite active modules.
Background
The ability to adapt to environments with fluctuating nutrient availability is vital for bacterial survival. Although essential for growth, few nitrogen metabolism genes have been identified or fully characterised in mycobacteria and nitrogen stress survival mechanisms are unknown.
Results
A global transcriptional analysis of the mycobacterial response to nitrogen stress, showed a significant change in the differential expression of 16% of the Mycobacterium smegmatis genome. Gene expression changes were mapped onto the metabolic network using Active Modules for Bipartite Networks (AMBIENT) to identify metabolic pathways showing coordinated transcriptional responses to the stress. AMBIENT revealed several key features of the metabolic response not identified by KEGG enrichment alone. Down regulated reactions were associated with the general reduction in cellular metabolism as a consequence of reduced growth rate. Up-regulated modules highlighted metabolic changes in nitrogen assimilation and scavenging, as well as reactions involved in hydrogen peroxide metabolism, carbon scavenging and energy generation.
Conclusions
Application of an Active Modules algorithm to transcriptomic data identified key metabolic reactions and pathways altered in response to nitrogen stress, which are central to survival under nitrogen limiting environments
Velocity Correlations in Driven Two-Dimensional Granular Media
Simulations of volumetrically forced granular media in two dimensions produce
s tates with nearly homogeneous density. In these states, long-range velocity
correlations with a characteristic vortex structure develop; given sufficient
time, the correlations fill the entire simulated area. These velocity
correlations reduce the rate and violence of collisions, so that pressure is
smaller for driven inelastic particles than for undriven elastic particles in
the same thermodynamic state. As the simulation box size increases, the effects
of veloc ity correlations on the pressure are enhanced rather than reduced.Comment: 12 pages, 6 figures, 21 reference
An integrated experimental and economic evaluation of cell therapy affinity purification technologies
AIM: To present an integrated techno-economic analysis assessing the feasibility of affinity purification technologies using the manufacture of induced pluripotent stem cell-derived progenitor photoreceptors for retinal dystrophies as a case study. MATERIALS & METHODS: Sort purity, progenitor yield and viable cell recovery were investigated for three cell sorting techniques: fluorescent-activated cell sorting (FACS); magnetic-activated cell sorting (MACS); and a novel technology SpheriTech beads. Experimentally derived metrics were incorporated into an advanced bioprocess economics tool to determine cost of goods per dose for each technology. RESULTS & CONCLUSION: Technical and bioprocess benefits were noted with SpheriTech beads which, unlike FACS and MACS, require no cell labeling. This simplifies the bioprocess, reduces cell loss and leaves target cells label free. The economic tool predicted cost drivers and a critical dose (7 Ă 10(7) cells per dose) shifting the most cost-effective technology from FACS to MACS. Process optimization is required for SpheriTech to compete economically
Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches
PMCID: PMC3668194SEP was directly funded by the National Institute for Health Research
Cardiovascular Biomedical Research Unit at Barts. SN acknowledges support
from the Oxford NIHR Biomedical Research Centre and from the Oxford
British Heart Foundation Centre of Research Excellence. SP and PL are
funded by a BHF Senior Clinical Research fellowship. RC is supported by a
BHF Research Chair and acknowledges the support of the Oxford BHF Centre
for Research Excellence and the MRC and Wellcome Trust. PMM gratefully
acknowledges training fellowships supporting his laboratory from the
Wellcome Trust, GlaxoSmithKline and the Medical Research Council
Recommended from our members
Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results
Reconstructing past water availability, both as rainfall and irrigation, is important to answer questions about the way society reacts to climate and its changes and the role of irrigation in the development of social complexity. Carbon stable isotope analysis of archaeobotanical remains is a potentially valuable method for reconstructing water availability. To further define the relationship between water availability and plant carbon isotope composition and to set up baseline values for the Southern Levant, grains of experimentally grown barley and sorghum were studied. The cereal crops were grown at three stations under five different irrigation regimes in Jordan. Results indicate that a positive but weak relationship exists between irrigation regime and total water input of barley grains, but no relationship was found for sorghum. The relationship for barley is site-specific and inter-annual variation was present at Deir âAlla, but not at Ramtha and Khirbet as-Samra
Concurrent chemoradiotherapy for squamous cell carcinoma of the anus using a shrinking field radiotherapy technique without a boost
Chemoradiotherapy (CRT) is now widely accepted as the primary treatment modality for squamous cell cancer of the anus. While randomised trials have clearly shown CRT to be more effective than radiotherapy alone, there remains uncertainty over the optimal integration of chemotherapy and radiation. We describe a series of 50 patients treated by a site specialist gastrointestinal nonsurgical oncologist with CRT at a single UK centre. Chemotherapy comprised mitomycin C (MMC) (day 1) and 5-fluorouracil (5-FU) (days 1â4, and 29â32), concurrent with 50âGy in 25 fractions radiation, using a two-phase shrinking field technique. A radiation boost was not planned. At a median follow-up of 48 months, 11 (22%) of the patients have failed locally, of which three have been surgically salvaged. Nine (18%) have died of anal cancer. These results are comparable with those from large randomised studies, and suggest that a two-phase shrinking field radiotherapy technique with no boost, concurrent with MMC/5-FU chemotherapy, is an effective regimen for this disease. The CRT regimen described here provides the basis for the âcontrol armâ of the current UK-randomised CRT trial in anal cancer (ACT2)
Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
Addressing ethnic disparities in neurological research in the United Kingdom: An example from the prospective multicentre COVID-19 Clinical Neuroscience Study
\ua9 2024 The Author(s). Background: Minority ethnic groups have often been underrepresented in research, posing a problem in relation to external validity and extrapolation of findings. Here, we aimed to assess recruitment and retainment strategies in a large observational study assessing neurological complications following SARS-CoV-2 infection. Methods: Participants were recruited following confirmed infection with SARS-CoV-2 and hospitalisation. Self-reported ethnicity was recorded alongside other demographic data to identify potential barriers to recruitment. Results: 807 participants were recruited to COVID-CNS, and ethnicity data were available for 93.2%. We identified a proportionate representation of self-reported ethnicity categories, and distribution of broad ethnicity categories mirrored individual centresâ catchment areas. White ethnicity within individual centres ranged between 44.5% and 89.1%, with highest percentage of participants with non-White ethnicity in London-based centres. Examples are provided how to reach potentially underrepresented minority ethnic groups. Conclusions: Recruitment barriers in relation to potentially underrepresented ethnic groups may be overcome with strategies identified here
- âŚ