73 research outputs found

    Cross-Talk between the Cellular Redox State and the Circadian System in Neurospora

    Get PDF
    The circadian system is composed of a number of feedback loops, and multiple feedback loops in the form of oscillators help to maintain stable rhythms. The filamentous fungus Neurospora crassa exhibits a circadian rhythm during asexual spore formation (conidiation banding) and has a major feedback loop that includes the FREQUENCY (FRQ)/WHITE COLLAR (WC) -1 and -2 oscillator (FWO). A mutation in superoxide dismutase (sod)-1, an antioxidant gene, causes a robust and stable circadian rhythm compared with that of wild-type (Wt). However, the mechanisms underlying the functions of reactive oxygen species (ROS) remain unknown. Here, we show that cellular ROS concentrations change in a circadian manner (ROS oscillation), and the amplitudes of ROS oscillation increase with each cycle and then become steady (ROS homeostasis). The ROS oscillation and homeostasis are produced by the ROS-destroying catalases (CATs) and ROS-generating NADPH oxidase (NOX). cat-1 is also induced by illumination, and it reduces ROS levels. Although ROS oscillation persists in the absence of frq, wc-1 or wc-2, its homeostasis is altered. Furthermore, genetic and biochemical evidence reveals that ROS concentration regulates the transcriptional function of WCC and a higher ROS concentration enhances conidiation banding. These findings suggest that the circadian system engages in cross-talk with the cellular redox state via ROS-regulatory factors

    LOVTRAP: an optogenetic system for photoinduced protein dissociation

    Get PDF
    Here we introduce LOVTRAP, an optogenetic approach for reversible, light-induced protein dissociation. LOVTRAP is based on protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in Kd. By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins’ access to the cell edge, demonstrating a naturally occurring 3 mHz cell edge oscillation driven by interactions of Vav2, Rac1 and PI3K

    Investigation of Atomic Level Patterns in Protein—Small Ligand Interactions

    Get PDF
    BACKGROUND: Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset of 2,320 complexes. METHODOLOGY AND PRINCIPAL FINDINGS: We show that protein-ligand interactions are governed by different forces for different ligand types, i.e., protein-organic compound interactions are governed by hydrogen bonds, van der Waals contacts, and covalent bonds; protein-metal ion interactions are dominated by electrostatic force and coordination bonds; protein-anion interactions are established with electrostatic force, hydrogen bonds, and van der Waals contacts; and protein-inorganic cluster interactions are driven by coordination bonds. We extracted several frequently occurring atomic-level patterns concerning these interactions. For instance, 73% of investigated covalent bonds were summarized with just three patterns in which bonds are formed between thiol of Cys and carbon or sulfur atoms of ligands, and nitrogen of Lys and carbon of ligands. Similar patterns were found for the coordination bonds. Hydrogen bonds occur in 67% of protein-organic compound complexes and 66% of them are formed between NH- group of protein residues and oxygen atom of ligands. We quantify relative abundance of specific interaction types and discuss their characteristic features. The extracted protein-organic compound patterns are shown to complement and improve a geometric approach for prediction of binding sites. CONCLUSIONS AND SIGNIFICANCE: We show that for a given type (group) of ligands and type of the interaction force, majority of protein-ligand interactions are repetitive and could be summarized with several simple atomic-level patterns. We summarize and analyze 10 frequently occurring interaction patterns that cover 56% of all considered complexes and we show a practical application for the patterns that concerns interactions with organic compounds

    A LOV Protein Modulates the Physiological Attributes of Xanthomonas axonopodis pv. citri Relevant for Host Plant Colonization

    Get PDF
    Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease

    Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells

    Get PDF
    Abstract Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

    Get PDF
    We thank Dr. Ben Smith (University of Oklahoma) for assistance with FLIM-FRET measurements and Dr. Min Ni (University of Minnesota) for critical reading of the manuscript. The cop1-4 mutant allele and cop1-4 co-9 cross were kindly provided by George Coupland (Max Planck Institute).Author Summary Light perception is critically important for the fitness of plants in both natural and agricultural settings. Plants not only use light for photosynthesis, but also as a cue for proper development. As a seedling emerges from soil it must determine the light environment and adopt an appropriate growth habit. When blue and red wavelengths are the dominant sources of light, plants will undergo photomorphogenesis. Photomorphogenesis describes a number of developmental responses initiated by light in a seedling, and includes shortened stems and establishing the ability to photosynthesize. The genes regulating photomorphogenesis have been studied extensively, but a complete picture remains elusive. Here we describe the finding that NUCLEAR FACTOR-Y (NF-Y) genes are positive regulators of photomorphogenesis—i.e., in plants where NF-Y genes are mutated, they display some characteristics of dark grown plants, even though they are in the light. Our data suggests that the roles of NF-Y genes in light perception do not fit in easily with those of other described pathways. Thus, studying these genes promises to help develop a more complete picture of how light drives plant development.Yeshttp://www.plosgenetics.org/static/editorial#pee
    • …
    corecore