123 research outputs found

    Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate

    Get PDF
    Integrins have emerged as key sensory molecules that translate chemical and physical cues from the extracellular matrix (ECM) into biochemical signals that regulate cell behavior. Integrins function by clustering into adhesion plaques, but the molecular mechanisms that drive integrin clustering in response to interaction with the ECM remain unclear. To explore how deformations in the cell-ECM interface influence integrin clustering, we developed a spatial-temporal simulation that integrates the micro-mechanics of the cell, glycocalyx, and ECM with a simple chemical model of integrin activation and ligand interaction. Due to mechanical coupling, we find that integrin-ligand interactions are highly cooperative, and this cooperativity is sufficient to drive integrin clustering even in the absence of cytoskeletal crosslinking or homotypic integrin-integrin interactions. The glycocalyx largely mediates this cooperativity and hence may be a key regulator of integrin function. Remarkably, integrin clustering in the model is naturally responsive to the chemical and physical properties of the ECM, including ligand density, matrix rigidity, and the chemical affinity of ligand for receptor. Consistent with experimental observations, we find that integrin clustering is robust on rigid substrates with high ligand density, but is impaired on substrates that are highly compliant or have low ligand density. We thus demonstrate how integrins themselves could function as sensory molecules that begin sensing matrix properties even before large multi-molecular adhesion complexes are assembled

    Population Structure of a Hybrid Clonal Group of Methicillin-Resistant Staphylococcus aureus, ST239-MRSA-III

    Get PDF
    The methicillin-resistant Staphylococcus aureus (MRSA) clonal group known as ST239-MRSA-III is notable for its hybrid origin and for causing sustained hospital epidemics worldwide since the late 1970s. We studied the population structure of this MRSA clonal group using a sample of 111 isolates that were collected over 34 years from 29 countries. Genetic variation was assessed using typing methods and novel ascertainment methods, resulting in approximately 15 kb of sequence from 32 loci for all isolates. A single most parsimonious tree, free of homoplasy, partitioned 28 haplotypes into geographically-associated clades, including prominent European, Asian, and South American clades. The rate of evolution was estimated to be approximately 100× faster than standard estimates for bacteria, and dated the most recent common ancestor of these isolates to the mid-20th century. Associations were discovered between the ST239 phylogeny and the ccrB and dru loci of the methicillin resistance genetic element, SCCmec type III, but not with the accessory components of the element that are targeted by multiplex PCR subtyping tools. In summary, the evolutionary history of ST239 can be characterized by rapid clonal diversification that has left strong evidence of geographic and temporal population structure. SCCmec type III has remained linked to the ST239 chromosome during clonal diversification, but it has undergone homoplasious losses of accessory components. These results provide a population genetics framework for the precise identification of emerging ST239 variants, and invite a re-evaluation of the markers used for subtyping SCCmec

    A retrospective comparison of venetoclax alone or in combination with an anti-CD20 monoclonal antibody in R/R CLL

    Get PDF
    Venetoclax (VEN) is approved for relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) as monotherapy (VENmono) or in combination with rituximab. Whether VEN plus anti-CD20 (VENcombo) is superior to VENmono is unknown. We conducted a multicenter, retrospective cohort analysis comparing 321 CLL patients treated with VENmono vs VENcombo across the United States and the United Kingdom. We examined demographics, baseline characteristics, dosing, adverse events, response rates, and outcomes. The primary endpoints were progression-free survival (PFS) and overall survival (OS), estimated by Kaplan-Meier method, in patients treated with VENmono vs VENcombo. Univariate and bivariate analyses were performed with COX regression. Three hundred twenty-one CLL patients were included (3 median prior treatments, 78% prior ibrutinib). The overall response rates (ORRs) were similar (VENmono, 81% ORR, 34% complete remission [CR] vs VENcombo, 84% ORR, 32% CR). With a median follow-up of 13.4 months, no differences in PFS and OS were observed between the groups. In unadjusted analyses, the hazard ratios (HRs) for PFS and OS for VENmono vs VENcombo were HR 1.0 (95% confidence interval [CI], 0.6-1.8; P = .7) and HR 1.2 (95% CI, 0.6-2.3; P = .5), respectively. When adjusting for differences between the cohorts, the addition of an anti-CD20 antibody in combination with VEN did not impact PFS (HR, 1.0; 95% CI, 0.5-2.0; P = .9) or OS (HR, 1.1; 95% CI, 0.4-2.6; P = .8). We demonstrate comparable efficacy between VENmono and VENcombo in a heavily pretreated, high-risk, retrospective cohort, in terms of both response data and survival outcomes. Prospective studies are needed to validate these findings

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    A systematic review of mental health outcome measures for young people aged 12 to 25 years

    Full text link
    corecore