13 research outputs found

    No effect of short-term amino acid supplementation on variables related to skeletal muscle damage in 100 km ultra-runners - a randomized controlled trial

    Get PDF
    Background: The purpose of this study was to investigate the effect of short-term supplementation of amino acids before and during a 100 km ultra-marathon on variables of skeletal muscle damage and muscle soreness. We hypothesized that the supplementation of amino acids before and during an ultra-marathon would lead to a reduction in the variables of skeletal muscle damage, a decrease in muscle soreness and an improved performance. Methods: Twenty-eight experienced male ultra-runners were divided into two groups, one with amino acid supplementation and the other as a control group. The amino acid group was supplemented a total of 52.5 g of an amino acid concentrate before and during the 100 km ultra-marathon. Pre- and post-race, creatine kinase, urea and myoglobin were determined. At the same time, the athletes were asked for subjective feelings of muscle soreness. Results: Race time was not different between the groups when controlled for personal best time in a 100 km ultra-marathon. The increases in creatine kinase, urea and myoglobin were not different in both groups. Subjective feelings of skeletal muscle soreness were not different between the groups. Conclusions: We concluded that short-term supplementation of amino acids before and during a 100 km ultra-marathon had no effect on variables of skeletal muscle damage and muscle soreness

    An investigative study into the influence of a commercially available carbohydrate-protein-electrolyte beverage on short term repeated exercise performance

    Get PDF
    Background: The purpose of this study was to undertake an independent investigation into the effects of ingesting a carbohydrate-protein-electrolyte (CPE) beverage on repeated submaximal and time-trial cycling performance. Methods: Sixteen recreationally trained males (height: 1.76 +/- 0.07 m; weight: 70.05 +/- 7.90 kg; VO2max: 49.69 +/- 4.19 ml.kg1.min1) performed two exercise trials separated by 7 days. Each trial comprised two bouts of 90 minutes exercise separated by a 2 hour recovery period. Each bout comprised 45 minutes exercise on a cycle-ergometer at 60%VO2max (ST), followed immediately by a 45 minute performance test (PT). Participants were randomly assigned an 8% CPE beverage or colour/taste matched placebo (PL) prior to each trial. Participants consumed 100 ml of the assigned beverage every 10 minutes during each ST, and 500 ml at 0 and 60 minutes into recovery (total caloric delivery per trial: 617.6 kcal for CPE and12.8 kcal for PL). Mean power output (W), speed (km.hr1) and distance covered (km) were assessed throughout both trials. Expired air was sampled at 10 minute intervals throughout ST. Blood glucose and lactate were assessed during ST and recovery. RESULTS: Distance covered during ST was significantly reduced with PL by 9.12% (20.18 +/- 0.28 km in ST1 v 18.34 +/- 0.36 km in ST2; P = 0.0001). With CPE, distance covered, power output and average speed were maintained between ST1 and ST2. Oxygen uptake was not significantly different between ST1 and ST2, or conditions. Respiratory exchange ratio (RER) values decreased from 0.98 +/- 0.02 in ST1 to 0.91 +/- 0.02 in ST2 for PL (P = 0.003), supporting reduced total carbohydrate oxidation rates (P = 0.007). Mean blood glucose was maintained in CPE across ST trials, and was significantly greater than PL in ST2 (4.77 +/- 0.09 mmol.L1 for CPE compared with 4.18 +/- 0.06 mmol.L1 for PL, P <0.001). Mean distance during PT2 was 2.96 km (or 17.1%) further with CPE than PL (P = 0.003). Mean power significantly decreased across PT with PL (134.21 +/- 4.79 W and 106.90 +/- 3.25 W, respectively; P <0.04). Conclusions: The use of a CPE beverage improves short-term repeated exercise and subsequent performance compared to PL. Higher rates of carbohydrate oxidation, maintenance of plasma glucose, and decreased levels of fatigue may be beneficial for secondary bouts of performance and faster recovery turnover.Peer reviewedFinal Published versio

    The effect of carbohydrate and marine peptide hydrolysate co-ingestion on endurance exercise metabolism and performance

    Get PDF
    Background: The purpose of this study was to examine the efficacy of introducing a fish protein hydrolysate (PEP) concurrently with carbohydrate (CHO) and whey protein (PRO) on endurance exercise metabolism and performance.Methods: In a randomised, double blind crossover design, 12 male volunteers completed an initial familiarisation followed by three experimental trials. The trials consisted of a 90 min cycle task corresponding to 50% of predetermined maximum power output, followed by a 5 km time trial (TT). At 15 min intervals during the 90 min cycle task, participants consumed 180 ml of CHO (67 g.hr-1 of maltodextrin), CHO-PRO (53.1 g.hr of CHO, 13.6 g.hr-1 of whey protein) or CHO-PRO-PEP (53.1 g.hr-1 of CHO, 11 g.hr-1 of whey protein and 2.4 g.hr-1of hydrolyzed marine peptides).Results and conclusions: During the 90 min cycle task, the respiratory exchange ratio (RER) in the CHO-PRO condition was significantly higher than CHO (p < 0.001) and CHO-PRO-PEP (p < 0.001). Additionally, mean heart rate for the CHO condition was significantly lower than that for CHO-PRO (p = 0.021). Time-to-complete the 5 km TT was not significantly different between conditions (m ± SD: 456 ± 16, 456 ± 18 and 455 ± 21 sec for CHO, CHO-PRO and CHO-PRO-PEP respectively, p = 0.98). Although the addition of hydrolyzed marine peptides appeared to influence metabolism during endurance exercise in the current study, it did not provide an ergogenic benefit as assessed by 5 km TT performance

    International Society of Sports Nutrition Position Stand: protein and exercise

    Get PDF
    Abstract Position statement The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows: 1) An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise. 2) For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4–2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein. 3) There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass). 4) Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20–40 g. 5) Acute protein doses should strive to contain 700–3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs). 6) These protein doses should ideally be evenly distributed, every 3–4 h, across the day. 7) The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise. 8) While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. 9) Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. 10) Different types and quality of protein can affect amino acid bioavailability following protein supplementation. 11) Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). 12) Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. 13) Pre-sleep casein protein intake (30–40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis

    Dietary strategies to recover from exercise-induced muscle damage

    No full text
    corecore