154 research outputs found

    Ateriovenous subclavia-shunt for head and neck reconstruction

    Get PDF
    Reconstruction of the facial hard- and soft tissues is of special concern for the rehabilitation of patients especially after ablative tumor surgery has been performed. Impaired soft and hard tissue conditions as a sequelae of extensive surgical resection and/or radiotherapy may impede common reconstruction methodes. Even free flaps may not be used without interposition of a vein graft as recipient vessels are not available as a consequence of radical neck dissection

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against <it>Anopheles culicifacies </it>and <it>Anopheles stephensi </it>for its possible use in vector control.</p> <p>Methods</p> <p>Efficacy of chlorfenapyr against <it>An. culicifacies </it>and <it>An. stephensi </it>was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of <it>An. culicifacies</it>.</p> <p>Results</p> <p>A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of <it>An. culicifacies </it>species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible <it>An. culicifacies </it>species A (0.41 and 2.0% respectively) and <it>An. stephensi </it>strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m<sup>2 </sup>on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against <it>An. culicifacies </it>and up to 34 weeks against <it>An. stephensi</it>. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of <it>An. stephensi </it>and field-caught <it>An. culicifacies. </it>Potentiation studies demonstrated the antagonistic effect of PBO.</p> <p>Conclusion</p> <p>Laboratory studies with susceptible and resistant strains of <it>An. culicifacies </it>and <it>An. stephensi</it>, coupled with limited field studies with multiple insecticide-resistant <it>An. culicifacies </it>have shown that chlorfenapyr can be a suitable insecticide for malaria vector control, in multiple-insecticide-resistant mosquitoes especially in areas with pyrethroid resistant mosquitoes.</p

    Delineating Geographical Regions with Networks of Human Interactions in an Extensive Set of Countries

    Get PDF
    Large-scale networks of human interaction, in particular country-wide telephone call networks, can be used to redraw geographical maps by applying algorithms of topological community detection. The geographic projections of the emerging areas in a few recent studies on single regions have been suggested to share two distinct properties: first, they are cohesive, and second, they tend to closely follow socio-economic boundaries and are similar to existing political regions in size and number. Here we use an extended set of countries and clustering indices to quantify overlaps, providing ample additional evidence for these observations using phone data from countries of various scales across Europe, Asia, and Africa: France, the UK, Italy, Belgium, Portugal, Saudi Arabia, and Ivory Coast. In our analysis we use the known approach of partitioning country-wide networks, and an additional iterative partitioning of each of the first level communities into sub-communities, revealing that cohesiveness and matching of official regions can also be observed on a second level if spatial resolution of the data is high enough. The method has possible policy implications on the definition of the borderlines and sizes of administrative regions.National Science Foundation (U.S.)Singapore-MIT Alliance for Research and Technolog

    Chameleon radiation by oceanic dispersal

    Full text link
    Historical biogeography is dominated by vicariance methods that search for a congruent pattern of fragmentation of ancestral distributions produced by shared Earth history(1-3). A focus of vicariant studies has been austral area relationships and the break-up of the supercontinent Gondwana(3-5). Chameleons are one of the few extant terrestrial vertebrates thought to have biogeographic patterns that are congruent with the Gondwanan break-up of Madagascar and Africa(6,7). Here we show, using molecular and morphological evidence for 52 chameleon taxa, support for a phylogeny and area cladogram that does not fit a simple vicariant history. Oceanic dispersal-not Gondwanan breakup-facilitated species radiation, and the most parsimonious biogeographic hypothesis supports a Madagascan origin for chameleons, with multiple 'out-of-Madagascar' dispersal events to Africa, the Seychelles, the Comoros archipelago, and possibly Reunion Island. Although dispersal is evident in other Indian Ocean terrestrial animal groups(8-16), our study finds substantial out-of-Madagascar species radiation, and further highlights the importance of oceanic dispersal as a potential precursor for speciation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62614/1/415784a.pd

    ‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators

    Get PDF
    To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’ combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and different parameter sets

    How to Achieve Fast Entrainment? The Timescale to Synchronization

    Get PDF
    Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker

    Severe Hindrance of Viral Infection Propagation in Spatially Extended Hosts

    Get PDF
    The production of large progeny numbers affected by high mutation rates is a ubiquitous strategy of viruses, as it promotes quick adaptation and survival to changing environments. However, this situation often ushers in an arms race between the virus and the host cells. In this paper we investigate in depth a model for the dynamics of a phenotypically heterogeneous population of viruses whose propagation is limited to two-dimensional geometries, and where host cells are able to develop defenses against infection. Our analytical and numerical analyses are developed in close connection to directed percolation models. In fact, we show that making the space explicit in the model, which in turn amounts to reducing viral mobility and hindering the infective ability of the virus, connects our work with similar dynamical models that lie in the universality class of directed percolation. In addition, we use the fact that our model is a multicomponent generalization of the Domany-Kinzel probabilistic cellular automaton to employ several techniques developed in the past in that context, such as the two-site approximation to the extinction transition line. Our aim is to better understand propagation of viral infections with mobility restrictions, e.g., in crops or in plant leaves, in order to inspire new strategies for effective viral control
    • …
    corecore