28 research outputs found

    Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort

    Get PDF
    OBJECTIVES: The aim of this study is to present age-and sex-specific reference values of insulin, glucose, glycosylated haemoglobin (HbA1c) and the homeostasis model assessment to quantify insulin resistance (HOMA-IR) for pre-pubertal children. METHODS: The reference population consists of 7074 normal weight 3- to 10.9-year-old pre-pubertal children from eight European countries who participated in at least one wave of the IDEFICS ('identification and prevention of dietary-and lifestyle-induced health effects in children and infants') surveys (2007-2010) and for whom standardised laboratory measurements were obtained. Percentile curves of insulin (measured by an electrochemiluminescence immunoassay), glucose, HbA1c and HOMA-IR were calculated as a function of age stratified by sex using the general additive model for location scale and shape (GAMLSS) method. RESULTS: Levels of insulin, fasting glucose and HOMA-IR continuously show an increasing trend with age, whereas HbA1c shows an upward trend only beyond the age of 8 years. Insulin and HOMA-IR values are higher in girls of all age groups, whereas glucose values are slightly higher in boys. Median serum levels of insulin range from 17.4 and 13.2 pmol l(-1) in 3-< 3.5-year-old girls and boys, respectively, to 53.5 and 43.0 pmol l(-1) in 10.5-< 11-year-old girls and boys. Median values of glucose are 4.3 and 4.5 mmol l(-1) in the youngest age group and 49.3 and 50.6 mmol l(-1) in the oldest girls and boys. For HOMA-IR, median values range from 0.5 and 0.4 in 3-< 3.5-year-old girls and boys to 1.7 and 1.4 in 10.5-< 11-year-old girls and boys, respectively. CONCLUSIONS: Our study provides the first standardised reference values for an international European children's population and provides the, up to now, largest data set of healthy pre-pubertal children to model reference percentiles for markers of insulin resistance. Our cohort shows higher values of Hb1Ac as compared with a single Swedish study while our percentiles for the other glucose metabolic markers are in good accordance with previous studies

    Immune Activation Reduces Sperm Quality in the Great Tit

    Get PDF
    Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm

    Lysosomes in iron metabolism, ageing and apoptosis

    Get PDF
    The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Fluorescent polymer coatings with tuneable sensitive range for remote temperature sensing

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Polymer films of poly(vinyl alcohol) containing the fluorescent dyes 4-aminophthalimide (AP) or 6-propiony1-2-dimethylamino-naphthalene (Prodan) are used as temperature-sensitive fluorescent coatings for remote temperature sensing. Temperature can be obtained by a two-wavelength ratiometric-based emission intensity measurement. The coatings are sensitive in a 100 K temperature range that can be tuned by polymer-solute interactions. The usable range is 200-300 K for AP and 280-380 K for Prodan. (C) 2013 Elsevier B.V. All rights reserved.1161316ANPCyT, UBACONICET (Argentina)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and Prodan

    No full text
    Steady-state and time-resolved emission spectroscopy (TRES) of the medium-sensitive probes 4-aminophthalimide (4-AP) and 6-propionyl-2-(dimethylamino)naphthalene (Prodan) were performed at 77 and 298 K in vacuum-sealed thin films of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc). The two probes show similar red-edge effect in steady state emission and a red shift with time in TRES in PVA. In PVAc the red shifts are much smaller and the spectral shift for 4-AP is slower. 4-AP locates in highly polar environments in PVA, where H-bond interaction with the polymer is important. Prodan locates in less polar environments, as evidenced by the position of the emission maximum with respect to reference solvents. Consequently, the observed monoexponential spectral red shift with time of 4-AP in PVA and in PVAc is attributed to relaxation of the interaction of the probe with the hydroxy and acetate moieties, respectively. The more intense interaction of the lighter -OH moiety with the probes explains the greater and faster spectral shift observed in PVA compared to PVAc. The lifetime of this monoexponential spectral shift is independent of temperature in PVA and takes place with a highly negative activation entropy. This fact is attributed to a collective rearrangement of -OH groups to better interact with the excited state. This relaxation nevertheless does not account for the complete accommodation of the excited state. Prodan shows a linear variation of the spectral shift with time that can be explained by microheterogeneity. In PVA, the width at half-maximum of the emission spectra does not change with time for Prodan and it decays with a lifetime similar to the lifetime of the spectral shift in the case of 4-AP. The differences in the behavior of the probes are attributed to their different average location in the polymer matrix.10933161801618
    corecore