1,209 research outputs found

    The Use of Empathy in Human Services: Strategies for Diverse Professional Roles

    Get PDF
    Human service professionals must manage a variety of roles and responsibilities in order to meet individual, group, and community needs. Managing these roles often necessitates the use of empathy in order to correctly understand issues, build trusting relationships, and meet the needs of client populations. This article presents a brief overview of empathy and applies it to the human service roles of direct service worker, advocate, administrator, and evaluator. In each professional role, examples are provided of how empathy can help human service workers achieve optimal outcomes. Implications for human services training and professional development are also provided

    Real-Time Digital Simulators: A Comprehensive Study on System Overview, Application, and Importance

    Get PDF
    The multifarious improvements in computational and simulation tools have brought tremendous progress in the field of designing, testing and analyzing technologies. In this paper, the technological aspects and the concept of modern real-time digital simulators are presented. The real-time simulator functions in real time, thus it produces continuous output that realistically represents the conditions of a real system. Also, in a real-time simulator the user can test physical devices. Therefore, it is of great importance to understand the features and roles of the advanced simulator technologies. Also, User-friendly system interface, easy application in system design and testing, and most importantly cost effectiveness are the most desire features for implying these simulator into a research. Therefore, this paper summarizes all significant features by considering the above-mentioned facts of some most popular, globally, and commercially available simulator technologies. Real Time Digital Simulators (RTDS), OPAL-RT, Network Torsion Machine Control (NETOMAC), dSPACE, Real-Time solution by MathWorks (xPC target, Real-Time Windows target), Power_system Online_simulation Unveil Your Analysis (POUYA) Simulator and Typhoon HIL Simulator are discussed in this review paper based on the accessibility of information. A summarization of these simulators’ background, hardware, software and communication protocols are presented. Applications of these above-mentioned simulators are also added to understand the potentials of these simulators

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Modeling of Phosphorous Acid Fuel Cell in PSCAD

    Get PDF
    The renewable energy sources, such as wind, fuel cells, etc. are gaining more attention due to the increase in energy demand as well as being environmental kindly. A dynamic model of Phosphorous Acid Fuel Cell is modeled and simulated using PSCAD/EMTDC. The system consists of a fuel cell stack along with 3-phase Pulse-Width Modulator (PWM) inverter, LCL filter and step-up transformer connected to the main grid. A Real-Reactive power controller is implemented into the 3-phase PWM inverter to control and stabilize the active and reactive power flow onto the main grid. A LCL filter is connected to the inverter side, which eliminates the ultra-harmonic distortions of the frequency. The effect of the Line-Ground, Line-Line, etc. faults on the performance of the main grid’s output voltage is analyzed and studied. The fuel cell is connected to the main grid and the simulation results contain the analysis at different stages of the simulation

    The proposed dropping of the genus crassostrea for all Pacific cupped oysters and its replacement by a new genus magallana: a dissenting view

    Get PDF
    The World Register of Marine Species (WoRMS) currently registers all Pacific cupped oysters that were formerly members of the genus Crassostrea in a new genus, Magallana. Magallana gigas is designated as an ‘‘accepted name,’’ whereas a search for Crassostrea gigas results in the message ‘‘no matching results found.’’ This has caused dismay among many biologists, aquaculturists, and other stakeholders with an interest in the Pacific and other oysters. This note, which is authored by 27 interested scientists, presents a dissenting view and a rebuttal of the proposed change of genus

    Do looks constitute our perceptual evidence?

    Get PDF
    Contains fulltext : 225687pub.pdf (Publisher’s version ) (Open Access)16 september 202

    Ontological transparency, (in)visibility, and hidden curricula:Critical pedagogy and contentious edtech

    Get PDF
    AbstractThe steady migration of higher education online has accelerated in the wake of Covid-19. The implications of this migration on critical praxis—the theory-in-practice of pedagogy—deserve further scrutiny. This paper explores how teacher and student-led educational technology research and development can help rethink online critical praxis. The paper is based on a recent research project at the University of Edinburgh that speculatively explored the potential for automation in teaching, which generated insights into current and future pedagogical practice among both teachers and students. From this project emerged a series of pedagogical positions that were centred around visions of the future of teaching in response to automation: the pedagogical potential of visibility and invisibility online, transparency, and interrogating the hidden curricula of both higher education and educational technology itself. Through the surfacing of these pedagogical positions, this paper explores how critical pedagogy can be built into the broader teacher function and begins to identify the institutional structures that could potentially impede or accelerate that process.</jats:p
    • 

    corecore