15,474 research outputs found
ASP Artificial Scientific Programming
Artificial scientific programming language for solving differential equation
A direct proof of Kim's identities
As a by-product of a finite-size Bethe Ansatz calculation in statistical
mechanics, Doochul Kim has established, by an indirect route, three
mathematical identities rather similar to the conjugate modulus relations
satisfied by the elliptic theta constants. However, they contain factors like
and , instead of . We show here that
there is a fourth relation that naturally completes the set, in much the same
way that there are four relations for the four elliptic theta functions. We
derive all of them directly by proving and using a specialization of
Weierstrass' factorization theorem in complex variable theory.Comment: Latex, 6 pages, accepted by J. Physics
Bethe Ansatz Equations for the Broken -Symmetric Model
We obtain the Bethe Ansatz equations for the broken -symmetric
model by constructing a functional relation of the transfer matrix of
-operators. This model is an elliptic off-critical extension of the
Fateev-Zamolodchikov model. We calculate the free energy of this model on the
basis of the string hypothesis.Comment: 43 pages, latex, 11 figure
Gaudin Hypothesis for the XYZ Spin Chain
The XYZ spin chain is considered in the framework of the generalized
algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of
the Bethe vectors is computed and expressed in the form of a Jacobian. This
result corresponds to the Gaudin hypothesis for the XYZ spin chain.Comment: 12 pages, LaTeX2e (+ amssymb, amsthm); to appear in J. Phys.
Exact low-temperature behavior of kagome antiferromagnet at high fields
Low-energy degrees of freedom of a spin-1/2 kagome antiferromagnet in the
vicinity of the saturation field are mapped to a hard-hexagon model on a
triangular lattice. The latter model is exactly solvable. The presented mapping
allows to obtain quantitative description of the magnetothermodynamics of a
quantum kagome antiferromagnet up to exponentially small corrections as well as
predict the critical behavior for the transition into a magnon crystal state.
Analogous mapping is presented for the sawtooth chain, which is mapped onto a
model of classical hard dimers on a chain.Comment: 5 pages, 2 figures, replaced with accepted versio
Ex-nihilo: Obstacles Surrounding Teaching the Standard Model
The model of the Big Bang is an integral part of the national curriculum for
England. Previous work (e.g. Baxter 1989) has shown that pupils often come into
education with many and varied prior misconceptions emanating from both
internal and external sources. Whilst virtually all of these misconceptions can
be remedied, there will remain (by its very nature) the obstacle of ex-nihilo,
as characterised by the question `how do you get something from nothing?' There
are two origins of this obstacle: conceptual (i.e. knowledge-based) and
cultural (e.g. deeply held religious viewpoints). The article shows how the
citizenship section of the national curriculum, coming `online' in England from
September 2002, presents a new opportunity for exploiting these.Comment: 6 pages. Accepted for publication in Physics E
Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions
We address the general problem of hard objects on random lattices, and
emphasize the crucial role played by the colorability of the lattices to ensure
the existence of a crystallization transition. We first solve explicitly the
naive (colorless) random-lattice version of the hard-square model and find that
the only matter critical point is the non-unitary Lee-Yang edge singularity. We
then show how to restore the crystallization transition of the hard-square
model by considering the same model on bicolored random lattices. Solving this
model exactly, we show moreover that the crystallization transition point lies
in the universality class of the Ising model coupled to 2D quantum gravity. We
finally extend our analysis to a new two-particle exclusion model, whose
regular lattice version involves hard squares of two different sizes. The exact
solution of this model on bicolorable random lattices displays a phase diagram
with two (continuous and discontinuous) crystallization transition lines
meeting at a higher order critical point, in the universality class of the
tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps
Entropy of Folding of the Triangular Lattice
The problem of counting the different ways of folding the planar triangular
lattice is shown to be equivalent to that of counting the possible 3-colorings
of its bonds, a dual version of the 3-coloring problem of the hexagonal lattice
solved by Baxter. The folding entropy Log q per triangle is thus given by
Baxter's formula q=sqrt(3)(Gamma[1/3])^(3/2)/2pi =1.2087...Comment: 9 pages, harvmac, epsf, uuencoded, 5 figures included, Saclay
preprint T/9401
Some comments on developments in exact solutions in statistical mechanics since 1944
Lars Onsager and Bruria Kaufman calculated the partition function of the
Ising model exactly in 1944 and 1949. Since then there have been many
developments in the exact solution of similar, but usually more complicated,
models. Here I shall mention a few, and show how some of the latest work seems
to be returning once again to the properties observed by Onsager and Kaufman.Comment: 28 pages, 5 figures, section on six-vertex model revise
Star-Triangle Relation for a Three Dimensional Model
The solvable -chiral Potts model can be interpreted as a
three-dimensional lattice model with local interactions. To within a minor
modification of the boundary conditions it is an Ising type model on the body
centered cubic lattice with two- and three-spin interactions. The corresponding
local Boltzmann weights obey a number of simple relations, including a
restricted star-triangle relation, which is a modified version of the
well-known star-triangle relation appearing in two-dimensional models. We show
that these relations lead to remarkable symmetry properties of the Boltzmann
weight function of an elementary cube of the lattice, related to spatial
symmetry group of the cubic lattice. These symmetry properties allow one to
prove the commutativity of the row-to-row transfer matrices, bypassing the
tetrahedron relation. The partition function per site for the infinite lattice
is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted
figures replaced
- …