General Disclaimer

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

X-641-70-39
 PREPRINT
 MSSA TH $\times 63819$
 ASP
 ARTIFICIAL SCIENTIFIC PROGRAMMING

ROBERT BAXTER
EDWARD SULLIVAN

FEBRUARY 1970

GREENBELT, MARYLAND

$A S P$

ARTIFICIAL SCIENTIFIC PROGRAMMING

by
Fobert Baxter
and
Edward Sullivan

INTRODUCTION

Artificial Scientific Programming (ASP) is an application language designed to facilitate the computer solution of a large class of scientifically oriented problems. The salient feature of an application language is the minimum effort required to program a computer solution.

The ASP language is implemented on an IBM 360/91 with an MVT job scheduler. Input is accepted from cards, a remote input terminal system KIrS, or a question answer session using the 2250 display unit. The free form statements are translated into a Fortran IV program, which is optionally compiled and executed. Programs generated by ASP are readable and flexible enough to make basic alterations a simple process, because general numerical algorithms frequently require modification to solve a difficult problem.

In this report, the ASP language elements necessary to solve a system of first order ordinary differential equations are defined. A fifth order floating point version of Nordsieck's method ${ }^{1}$ is used to obtain solutions of first order initial value problems. Nordsieck incorporates iterative self starting, and
automatic revision of the step length into an efficient general purpose method. The step leneth is chosen such that a reiative measure of the truncation error per integration step is less than a specified bound. Fo ensure the stability of the differential equations, it is necessary to compute the spectral radius of the Jacobian matrix ${ }^{2}$. Consequently, the assurance of stability is left as a user supplied constraint on the step length.

```
[he following conventions are adhered to in the description of the ASP languace:
1. Statements are order independent unless explicitly stated otherwise, while expressions within a particular statement field are evaluated in the order they appear. Blanks are leriored except for headings.
```

2. Variable names, arithmetic expressions, and functions should be written following the normal Fortran conventions, with the restriction that names be no more than four characters.
3. A lower case e represents a Fortran arithmetic expression, c floating point constant, k an integer constant, and $v a$ variable name.

The first statement must be one of the three listed below:

SOLVE; ODI:
PROGRAM; DECK; ODE:
PROGRAM; RITS; ODE:
For each of the above a Fortran procram is generated which will solve a system of first order ordinary differential equations. If the first form is used the resulting Fortran program will be compiled and executed. Two and three will have the program punched on cards, or written on a disk so that it may be moved into a RITS
iibrary. The differential equations to be colved rust immediately follow the SOLVE or PROGRAM request and are expressed as either

$$
Y(1,1)=e_{1} ; Y(1,2)=e_{2} ; \quad-\quad Y(1, n)=e_{n}:
$$

or

$$
F(1)=e_{1} ; F(2)=e_{2} ;-F(n)=e_{n}:
$$

where $Y(1,1)$ represents the first derivative of Y_{1} with respect to T. The cenerated proeram is written to solve a system of equations with the standard nomenclature

$$
\frac{d Y}{d T}=F(T, Y)
$$

where Y and F are vectors. If it is more convenient to type in the equations with names other inan the standard, the following designation must appear

VARIABLES: $v_{1} ; v_{2} ; v_{3}:$
For example, the system represented by

$$
\frac{d P}{d R}=G(R, P)
$$

may have the ASP definition

$$
P(1,1)=e_{1} ; P(1,2)=e_{2} ; \cdots P(1, n)=e_{n}:
$$

or
$G(1)=e_{1} ; G(2)=e_{2} ; \cdots G(n)=e_{n}:$
VARIABLES: R; P; G:
If "computational" equations facilitate the writing of the differential equations, they are specified as

EQUATIONS: $v_{1}=e_{1} ; v_{2}=e_{2} ; \cdots v_{n}=e_{n}$:

Sumations are indicated by the Asp function $\operatorname{SIGMA}\left(v=k_{1}, k_{2} ; e\right)$
To 1llustrate the way the EQUATION statement and the summation function are used consider the system of equations
$Y_{1}=Y_{i} /\left(Y_{1}+Y_{2}+Y_{3}\right)$
This rystem may be written
$Y(1,1)=Y(1) / R ; Y(1,2)=Y(2) / R ; Y(1,3)=Y(3) / R ;$
EQUATIONS: $S=S I G M A(I=1,3 ; Y(I)) ; \mathrm{H}=5 \mathrm{SRT}(3):$
SIGMA may only appear in assignment statemente of the form $v=e_{1}+e_{2} \# \operatorname{SIGMA}(---)$, and 1 ts use is restricted to the EQUATION and DYNAMIC statements. The summand in the SIGMA function may contain nested suns such as the double sum
$S 2=\operatorname{SIGMA}(I=1.10 ; A(I) \# \operatorname{Sanh}(J=1.5 ; B(I, J)))$
The size of arrays tha: weser in the program other than Y and F ic transmitted by

AREAYS: $v_{1}\left(\underline{k}_{1}\right) ; v_{2}\left(\underline{k}_{2}\right) ; \cdots v_{n}\left(\underline{k}_{n}\right)$:
where \underline{k} denotes a vector of seven or less elements.
A convenient way to initialize arrays is to use
DATA: $v_{1}, v_{2}, \cdots v_{r_{1}} ; k_{1}{ }^{*} c_{1}, k_{2}{ }^{*} c_{2}, \cdots k_{n}{ }^{*} c_{n}$:
or
TABULAR: list; format:
The construction of these statements is best exemplified

by their ASP Fortran translations

DATA $v_{1}, v_{2}, \cdots v_{n} / k_{1}{ }^{* c_{1}}, k_{2}{ }^{*} c_{2}, \cdots k_{n}{ }^{*} c_{n} /$
and
READ (5, xx) 11st
xx FORMAT (format)
One procedure to initialize the matrices

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{array}\right]
$$

is to specify
ARRAXS: $A(3,3) ; B(3,3):$
DATA A: 3*1.0, 3*2.0. 3*3.0:
TABULAR: ($(B(I, J), I=1,3), J=1,3)$; 3F5.1:
The data cards associated with each TABULAR statement follow the ASP program, and are arranged in the order requested. Statements used to represent parameters and Fortran arithmetic functions are of the form

PARAMETERS: $v_{1}=c_{1} ; v_{2}=c_{2} ; \cdots v_{n}=c_{n}$:
FUNCTIONS: $v_{1}\left(\underline{v}_{1}\right)=e_{1} ; v_{2}\left(\underline{v}_{2}\right)=e_{2} ; \cdots v_{n}\left(\underline{v}_{n}\right)=e_{n}$;
The interval of integration and the print increment are defined in

INTERVAL: $c_{1} ; c_{2}$ PRINT: $c_{3}($ default=1.0): Backward integration is implicitly defined by $c_{1}>c_{2}$. c_{3} must be positive, and normally the solution will be
printed for $T=c_{1}, c_{1}+c_{3}, \cdots c_{1}+k c_{3}, c_{2}$. Initial conditions are given with

INITIAL: $Y(1)=e_{1} ; \quad Y(2)=e_{2} ; \cdots Y(n)=\epsilon_{n}:$ Frequently, it is necessary to have functions dependent on the integrated values printed out alone with the solution. This is accomplished by including

DYNAMIC: $v_{1}=e_{1} ; v_{2}=e_{2}-v_{n}=e_{n}$:
Another useful calculation associated with solutions of differential equations is the evaluation of integrals. Integration is specified in eeneral by

INTEGRAL(v; e)
The limits of integration are assumed to be those in the INTERVAL statement. For example to evaluate
$A=\int \exp (-T) Y_{1} d^{\prime} \Gamma$
it is necessary to include
INTEGRAL(A; $\operatorname{EXP}(-T) * Y(1)):$
If the differential equations contain indeterminate forms over the interval of integration the limiting values are defined as

SINGULAR: $T=c ; F(1)=e_{1} ; F(2)=e_{2} ; \cdots F(n)=e_{n}:$ The default value for a bound on the relative truncation error per step is 10^{-5}. This may be changed by stating PRECISION: k:

If $k \leq 5$ a single precision program is written, and double precision if $k>5$. When defining a double precision

```
program, it is necessary to use the corresponding double
precision Fortran functions if any appear in the ASP
expressions. If a fixed step length and no automatic
truncation error testine or step length modification
Is desired
    STEP: c}\mp@subsup{c}{1}{\prime}\mp@subsup{c}{2}{
must be included. The step Jength will have the value
c}\mp@subsup{1}{1}{.}\mathrm{ The constant c}\mp@subsup{c}{2}{}\mathrm{ is optional and if inserted
signifies that truncation error testing is to be resumed
when the independent variable of integration is greater
than c}\mp@subsup{c}{2}{}\mathrm{ . A heading to be printed on each page of output
is denoted
    HEADING: 80 or less alphanumeric charactars:
Comments may be inserted anywhere in the program and
are enclosed by double quotes
    " any appropriate comment "
To have a condensed version of the output written on a
disk so that a listing on the remote terminal is possible
the statement
    OUTPUT: TERMINAL:
must be included.
```


EXA:MPLES

For the first exanple a restricted three body problem ${ }^{3}$ (earth-moon-spaceship) is considered

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=x+2 \frac{d y}{d t}-a^{\prime}(x+g)-a\left(x-g^{\prime}\right) \\
& \frac{d^{2} y}{d t^{2}}=y-2 \frac{d x}{d t}-a^{\prime} y-a y
\end{aligned}
$$

with

$$
\begin{aligned}
& \varepsilon=1 / 82 \cdot 45, \varepsilon^{\prime}=1-\varepsilon \\
& a=\varepsilon /\left(\left(x-\varepsilon^{\prime}\right)^{2}+y^{2}\right), a^{\prime}=g^{\prime} /\left((x+g)^{2}+y^{2}\right)
\end{aligned}
$$

and initial values
$t=0, x_{0}=1.2, x_{0}^{\prime}=0, y_{0}=0, y_{0}^{\prime}=-1.04935750983$. The solution $x(t), y(t)$ is a closed orbit with period $t=6.192169331396$. After a change of variable to rewrite the equations as a first order system an ASP program for this example is

SOLVE; ODE:
$F(1)=U(3) ; F(2)=U(4) ;$
$F(3)=U(1)+2.0 * U(4)-A P *(U(1)+g)-A^{*}(U(1)-G P) ;$
$F(4)=U(2)-2.0 * U(3)-U(2) *(A P+A):$
VARIABLES: T; U; F:
EQUATIONS: $A=G / D S Q R T((U(1)-G F) * * 2+U(2) * * 2) * * 3$;
$A P=G P / D S Q R T((U(1)+G) * * 2+U(2) * * 2) * * 3:$

PARAMETERS: $G=1.2128562755312 \mathrm{D}-2$;
$\mathrm{GP}=9.8787143723469 \mathrm{D}-1$:
INITIAL: $U(1)=1.2 D+0 ; U(2)=0.0 D+0 ; U(3)=0.0 D+0$;
$U(4)=-1.04935750983:$
PRECISION: 9: PRINI: 6.192169331396D-1:
INTERVAL: 0.0D+0; 6.192169331396:
HEADING: RESTRICTED 3-BODY PROBLEM:
Two successive colons indicate the end of the ASP program. The resulting solution is listed in Appendix B.

The next example is a solution of the regular Coulomb function ${ }^{4}$ which satisfies the differential equation
$\frac{d^{2} w}{d \rho^{2}}+\left(1-2 \frac{2}{3}-\frac{L(L+1)}{\rho^{2}}\right) w=0$
for $L=0, \eta=1 / 2$. An ASP procram to solve this equation is SOLVE; ODE:

$$
\begin{aligned}
& W(1,1)=W(2) ; \\
& W(1,2)=(-1 \cdot 0+2 \cdot 0 * E T A / R H O-E L *(E L+1) / R H O * * 2) * N(1):
\end{aligned}
$$

VARIIABLES: RHO; W; F:
PARAMETERS: EL=0.0; ETA=0.5; CL=3.766858E-1:
INITIAL: $W(1)=0.0 ; W(2)=C L:$
SINGULAR: $\mathrm{RHO}=0.0 ; W(1,1)=C L ; W(1,2)=C L$:
HEADING: COULOMB FUNCTION:
INTERVAL: 0.0; 10.0: PRINT: 1.0::
The solution from this program is also in Appendix B.

APPENDIX A

summary of the language elements

ARRAYS: $v_{1}\left(\underline{k}_{1}\right) ; v_{2}\left(\underline{k}_{2}\right) ;--v_{n}\left(\underline{k}_{n}\right)$:
DYNAMIC: $v_{1}=e_{1} ; v_{2}=e_{2} ; \cdots v_{n}=e_{n}$:
EQUATIONS: $v_{1}=e_{1} ; v_{2}=e_{2} ;--v_{n}=e_{n}$:
FUNCTIONS: $v_{1}\left(\underline{v}_{1}\right)=e_{1} ; \quad v_{2}\left(\underline{v}_{2}\right)=e_{2} ; \cdots v_{n}\left(v_{n}\right)=e_{n}$:
HEADING: 80 or less alphanumeric characters :
INITIAL: $Y(1)=e_{1} ; Y(2)=e_{2} ;---Y(n)=e_{n}:$
INTEGRAL(v; e):
INTERVAL: $c_{1} ; c_{2}$
OUTPUT: TERMINAL:
PARAMETERS: $v_{1}=c_{1} ; v_{2}=c_{2} ; \cdots v_{n}=c_{n}$:
PRECISION: k:
PRINT: c:
$\operatorname{SIGMA}\left(v=k_{1}, k_{2} ; e\right)$
STEP: $c_{1} ; c_{2}:$
TABULAR: list; format:
DATA: $v_{1}, v_{2}, \cdots v_{n} ; k_{1}{ }^{*} c_{1}, k_{2}{ }^{*} c_{2}, \cdots k_{n}{ }^{*} c_{n}$:
VARIABLES: $v_{1} ; v_{2} ; v_{3}$:
" any comment "

APPENDIX B

PROGRAM OUTPUT


```
                        APPENDIX C
                JCL AND DECK SETUP
    job card
//JOBLIB DD DSN=SYS1.SNOBOL,DISP=SHR
// EXEC ASP
//ASP.INPUT DD*
        ASP program
    /*
//GO.DATA5 DD *
    data cards specified by TABULAR statements
    arranged in the order requested
```


REFERENCES

1. A. Nordsieck, "Numerical Integration of Ordinary Differential Equations." Mathematics of Computation, v. 16, 1962, p.22-49.
2. H. R. Lewis, Jr. and E. J. Stovall, Jr. "Comments on a Floating Point Version of Nordsieck's Scheme for the Numerical Integration of Differential Equations," Mathematics of Computation, v. 21, 1967. p. 157-161.
3. Roland Bulirsch and Josef Stoer, "Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods," Numerische Mathematik, v. 8, 1966, p. 1-13.
4. Milton Abramowitz, "Coulomb Wave Functions," in Handbook of Mathematical Functions, fifth edition, U. S. Dept. of Commerece National Bureau of Standards Applied Mathematics Series 55, 1965, p. 537-554.
