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INTRODUCTION

Artificial Scientific Programming (ASP) is an
application language designed to facilitate the computer
solution of a large class of sclentifically oriented
problems. The salient feature of an application language
is the minimum effort required to program a computer
solution.

The ASP language is implemented on an IBM 360/91
with an MVT job scheduler. Input is accepted from cards,
a remote input terminal system RITS, or a question-answer
session using the 2250 display unit. The free form
statements are translated into a Fortran IV program,
which is optionally complled and executed. Programs
generated by ASP are readable and flexible enough to
make basic alterations a simple process, because
general numerical algorithms frequently require modification
to solve a difficult problen.

In this report, the ASP language elements necessary
to solve a system of first order ordinary differential
equations are defined. A fifth order floating point

1 i1s used to obtain

version of Nordsieck's method
solutions of first order initial value problems.

Nordsleck incorporates iterative self starting, and



automatic revision of the step length into an efficient
general purpose method. the step length 1s chosen such
that a relative measure of the truncatlion error per
integration step 1s less than a specified bound. To
ensure the stabllity of the differential equations, it
is necessary to compute the spectral radius of the

2

Jacobian matrix™. Consequently, the assurance of stability

is left as a user supplied constraint on the step length.



ASP 3YNTAX

Phe following conventions are adhered to in the
desaeription of the ASP language:

1. 3tatemnents are order lndependent unless
explicitly stated otherwlise, whlle expressions
within a particular statement fleld are
evaluated in the order they appear. Blanks
are lgnored except for headings.

2. Variasble names, arithmetic expressions, and
functions should be written following the
normal Fortran conventions, with the restriction
that names be no more than four characters.

3. A lower case e rapresents a Fortran arithmetic
expression, ¢ a floating point constant, k an
integer constant, and v 4 variable name.

The flrst statement must be one of the three listed

below:

S0LVZ; ODis:

PROGRAM; DECK; OD=Z:

PROGRAM; RIT3; O0D3:
For each of the above a Fortran program is generated
which will ¢olve a system of first order ordinary
differential equations. If the first form is used the
resulting Fortran program will be compiled and executed.
Two and three will have the program punched on cards, or

written on a disk so that it may be moved into a RITS
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Tibrary. The differential equations to be rolved rnuat
immediately follow the 30LVI or PROGRAN request and are
expressed as elther

Y(1,1)=eq; Y(1,2)=e2; === Y(l.n):en:
or

F(l)=eq; F( 2)=ey; === F(n)=e,:
where Y(1,1) represents the first derivative of Y, with
respect to T, T[he generated program is written to solve
a system of equations with the standard nomenclature

F = F(1.Y)

where Y and F are vectors. If it is more convenient to
typre in the equations with names other “han the standard,
the following designation must appear

VARIABLES: Vi Vi Vi
For example, the system represented by

& = G(R,P)

may have the ASP definition
P(1,1)=eq; P(1,2)=ep; =--= P(1,n)=e,:
or
G(1l)=eq; G(2)=ep; ~=- G(n)=e,:
VARIABLES: R; P; G:
If "computational" equations faclilitate the writing of
the differential equations, they are specified as

EQUATIONS: vy=eq; vp=ep; === V =ep,:
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Summations are indicated by the A3P function
31GHA(v=k, ,k ; e)
[

To 1llustrate the way the IQUATION statement and the
summation function are ured consider the system of
equations

= +
Y, xi/(xl 7,
This syctem may be written

+Y3)

SIGMA may only appear in ascignment statements of the
form v=ej+ez*SIGMA(---), and its use iz recstricted to
the EQUATICN and DYNAMIC statements. The summand in
the 3IGMA function may contein nested sums such as the
double sum

S2=0ICMA(I=1,1C; A(I)*3IGHA(JI=1,5; B(I,J)))
The sirze of arrays tha'! wunpear in the program other
than Y and F iz tran=mitted by

ARNAYS: v1(£1>; Vz(gz); -——- Vn(gh):
wrere k denotes a vector of seven or less elements.
A convenlent way to initialize arrays is to use

r
or
TABULAR: 1list; format:

The construction of thece statements is best exemplified
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by their ASP Fortran translations

DATA Vir Voo === ¥y / kl*ol. kz*c ) === kn*cn /

2' 2

and
READ (5,xx) list
xx FORMAT (format)

One procedure to initialize the matrices

1 2 3] (2 3 4]
A=1|1 2 13 B=|3 b4 5
1 2 %J L 5 6

is to specify
ARRAYS: A(3,3); B(3,3):
DATA A: 3%1.0, 3%2.0, 3%3.0:
TABULAR: ((B(I,J),I=1,3),J=1,3); 3F5.1:
The data cards assoclated with each TABULAR statement
follow the ASP program, and are arranged in the order
requested. Statements used to represent parameters and
Fortran arithmetic functions are of the form
PARAMETERS: v_=c_; v2=c2; - vn=c :

1 1 n

FUNCTIONS: vy(¥,)=e,; V,(¥,)=e,; === v (¥ )=e :

The interval of integration and the print incrementi are
defined in

1!
Backward integration is implicitly defined byfcl>02.

INTERVAL: c. ; c,t PRINT: c,(default=1.0):

c., must be positive, and normally the solution will be

3

b=



printed for‘Tecl. 01+03. - cl+k03. cz. Initial
conditions are given with
INITIAL: Y(1)=el; Y(Z);ezg -~ Y(n)sen:
Frequently, it 1s necessary to have functlons dependent
on the integrated values printed out along with the
solution. This 1s accomplished by including
DYNAMIC: viselg v2=e2 - vngen:
Another useful calculation assoclated with solutions
of differential equations is the evaluation of integrals.
Integration is specified in general by
INTEGRAL(v; e)
The limits of integration are assumed to be those in
the INTERVAL statement. For example to evaluate
A =fexp(-’1‘) Yl dr
it 18 necessary to include
INTEGRAL(A; EXP(-T)#*Y(1)):
If the differential equations contain indeterminate
forms over the interval of integration the limiting
values are defined as
SINGULAR: T=c; F(l)zelg F(2)=62; ——— F(n)=en:
The defsult value for a bound on the relative truncation
error per step is 10_5. This may be changed by stating
PRECISION: K:

If k€5 a single precision program is written, and double

precision if k»5. When defining a double precision
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program, it 1s necessary to use the corresponding double
preclsion Fortran functions Lf any appear in the ASP
expressions. If a flxed step length and no automatic
truncation error testing or step length modification
is deslred

STEP: cls 02:
must be included. The step length will have the value
cl. The constant c, is optional and if inserted
glgnifies that truncation error testing is to be resumed
when the independent variable of integration is greater
than 02' A heading to be printed on each page cf output
is denoted

HEADING: B0 or less alphanumeric charactars;
Comments may be inserted anywhere in the program and
are enclosed by double guotes

" any appropriate comment "
To have a condensed version of the output written on a
disk so that a 1listing on the remote terminal 1s possible
the statement

OUTPUT: TERMINAL:

must be included.



EXAMPLES

For the first example a restricted three body

problem3 (earth-moon-spaceship) is considered

d°x dy

—s = X + R = a'(x + g) - a(x - g')
it dt

dzy dx

— 2 Y = 2= = A'y - ay

dt? dt

with

g = 1/82.45, ¢' =1 - ¢

a=g/ ((x-gW%+5%), a =g/ ((x+8)° + 5%
and initial values

t=0, x0=1.2. x5=0. y0=0. y6=-1.0U935750983.
The solution x(t), y(t) is a closed orbit with period
t=6.192169331396. After a change of variable ,to rewrite
the equations as a first order system an ASP program for
this example 1is

SOLVE; ODE:

F(1)=U(3); F(2)=U(4);

F(3)=U(1)+2.0%U(4)-AP*(U(1)+g)-A*(U(1)~GP);

F(4)=U(2)-2.0%U(3)-U(2)*(AP+A):

VARIABLES: T; U; F:

EQUATIONS: A=G/DSQRT((U(1)=GF)#*2+U(2)##2)#%3;

AP=GP/DSQRT ((U(1)+G) ##24U{2) ##2) ##3,
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PARAMETZRS: G=1.2128562765312D=-2;
GP=9-87871Q3723&69D—1:
INITIAL: U(1)=1.2D40; U(2)=0.0D40; U(3)=0.0D+0;
U(b4)=-1.04935750983:
PRECISION: 9: PRINT: 0.1921469331396D-1;
INTERVAL: 0.0D+0; 6.192169331396:
HEADING: RESTRICTED 2-BODY PROBLEM::
Two successlve colons indicate the end of the ASP
program. The resulting solution is listed in Appendix B.
The next exsmple is a solution of the regular
Coulonb functionu Wwhich satisfles the differential
equation

dzw L(L+1)

a;i + (1 - 23}--—j;——)w = 0
for L=0,%=1/2. An ASP program to solve this equation is
SOLVE; ODE:
W(l,1)=W(2);
W(1,2)=(~1.042.0*ETA/RHO-EL¥*(EL+1)/RHO**2)#y(1):
VARIABLES: REO; W; F:
PARAMETERS: EL=0.0; ETA=0.5; CL=3.766858E-1;
INITIAL: W(1)=0.0; W(2)=CL:
SINGULAR: RHO=0.0; W(1,1)=CL; W(1,2)=CL:
HEADING: COULOMB FUNCTION:
INTERVAL: 0.0; 10.0s PRINT: 1.0::

The solution from this program is also in Appendix B.
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APPENDIX A
SUMMARY OF THE LANGUAGE ELEMENTS

ARRAYS: vl(gl); vz(l_gz); —-—— n(l-‘-n)=

EQUATIONS: v1=e1; v2=e2; —== V,=e,!

FUNCTIONS: v1(31)=e1; v2(32)=e2; —— vn(!n)=en:

HEADING: 80 or less alphanumeric characters :
INITIAL: Y(1)=e1; Y(2)=32; ——— Y(n)=en:
INTEGRAL(v; e):

INTERVAL: Cyi Cyt

2

OUTPUT: TERMINAL:

PARAMETERS: V.=C § V =C ; === V =C
1 17 2 2 n n

PRECISION: k:

PRINT: c:
SIGMA(v=k, ,ky; e)

STEP: 01; 02:
TABULAR: 1list; format:
DATA: V1, v2. n'
VARIABLES: Vv,; v ; v 3

1" 2" 3

" any comment "
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APPENDIX B
PROGRAM OUTPUT

ASP (ODE~-A) PROGRAM OUTPUT RESTRICTED 3 BODY PROBLEM

PARAMETEH3
G= 1.212856276531D-02 GP= 9.8787143723469D-01

T U(I), I=1,NE OR U(I)/F(1), I=1,NE

.0 1.2000000000000D 00 0.0
.1921693313960D-01 9.0356308532460D-01 -5,1736905428703D-01
.2384338662792D 00 2.1698908u58685D-01 «3.9249027884245D-01
.8576507994188D 00 -4.3088791432671D-01 -5,8767318174133D-01
U4763677325584D 00 ~9.9989012077892D-01 -5.5615662740507D-01
09608L46656980D 00 -1.2624543543930D 00 7.6927307460315D=09
.7153015988376D 00 =9.9989013924600D-01 5.5615665735015D-01
.3345185319772D 00 -4.3088793941594D-01 5.8767326387986D-01
.9537354651168D 00 3.1698904539412D-01 3.9249016659641D-01
.5729523982564D 00 9.0356307724612D-01 5
1 -3

.1736901733676D-01
.1921693313960D 00 1.2000000307160D 00

0
6
1
1
2
3
3
L
N
5
6 .3585912751935D-08
-INFEGRATION STEPS = 2776-

~TRUNCATION ERROR / STEP LESS THAN 1.0D-09

ASP (CDE-A) PROGRAM OUTPUT COULOMB FUNCTION
PARAMET ERS

EL= 0.0 ETA= 5.000000E-01

CL= 3.766858E-01

RHO W(I), I=1,NE OR W(I)/F(I), I=1,NE
0.0 0.0 3.766858E=01

1.000000E 00 5.166003E-01 5,929234E-01
2.000000E 00 1,021117E 00 3.296018E-01
3.000000E 00 1.043202E 00 =3.1698241-01
4.000000E 00 4.192396E-01 -8.667134E-01
5.000000£ 00 -4,904488E-01 -8.331279E-01
6.000000E 00 -1.028593E 00 -1.643893E-01
7+.000000E 00 =7.674270E-01 6.531553E-01
8.000000E 00 1.035077E-01 9.621581E-01
9.000000E 00 8.880071E-01 4.8855388-01
1.000000E 01 9.391693E-01 -3.957638E-01

-INTEGRATION STEPS = 122~
-TRUNCATION ZRROR / STEP LESS THAN 1.0E-05
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APPENDIX C
JCL AND DIECK SETUP

Job card
//JOBLIB DD DSN=SYS1.SNOBOL,DISP=SHR
// BXEC ASP
//ASP.INPUT DD *

ASP program

/*
//GO.DATAS DD *

data cards speciflied by TABULAR statements
arranged in the order requested
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