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NTRODUCTION

Artificial Scientific Programming (ASP) is an

application language designed to facilitate the computer

solution of a large class of scientifically oriented

problems. The salient feature of an application language

Is the minimum effort required to program a computer

solution.

The ASP language is implemented on an IBM 360/91

with an MVT job scheduler. Input is accepted from cards,

a remote input terminal system BITS, or a question-answer

session using the 2250 display unit. The free form

statements are translated into a Fortran IV program,

which is optionally compiled and executed. Programs

generated by ASP are readable and flexible enough to

make basic alterations a simple process, because

general numerical algorithms frequently .require modification

to solve a difficult problem.

In this report, the ASP language elements necessary

to solve a system of first order ordinary differential

equations are defined. A fifth order floating point

version of Nordsieck's method  is used to obtain

solutions of first order initial value problems.

Nordsieck Incorporates iterative self starting, and

t
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automatic revision of the step length into an efficient

general purpose method. the stela lenp:th is chosen such

that a relative measure of the truncation, error per

Integration step is less than a specified bound. To

ensure the stability of the differential equations, it

is necessary to compute the spectral radius of the

Jacobian matrixZ . Consequently, the assurance of stability

Is left as a user supplied constraint on the step length.
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the following conventions are adhered to in the

description of the ASP language:

1. 3tate^nents are order independent unless
explicitly stated otherwise, while expressions
within a particular statement field are
evaluated tri the order they appear. Blanks
are ignored except for headings.

2. Variable names, arithmetic expressions, and
r1inetions should be written following the
normal Fortran conventions, with the restriction
that names be no more than four characters.

3. A lower case e represents a Fortran arithmetic
expression, c a floating point constant, k an
integer constant, and v -x variable name.

The first statement must be one of the three .listed

below:

3OLU; ODE:

PROGRAM; DECK; ODE:

PROGRAM; Rrrs; OD3:

For each of the above a Fortran program is generated

which will tiolve a system of first order ordinary

differential equations. If the first form is used the

resulting Fortran program will be compiled and executed.

Two and three will have the program punched on cards, or

written on a disk so that it may be moved into a RITS

k
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library. The differentia, equations to be ^olved Tust

Immediately fol^.ow the a0L V" or PROGY APr request and, are

expressed as either

Y(1,1)=e l ; Y(1,2)-e2; --- Y(1,n)=en:

or

F(1)=e i ; F( 2)=e2 ; --- F(n)=en:

where Y(I,i) represents the first derivative of Y  with

respect to T. Che generated program is written to solve

a system of equations with the standard nomenclature

dY 
= F(T,Y)

where v and F are vectors. If it is more convenient to

type in the equations with names other -,,han the standard,

the following designation must appear

VARIABLES: v1 ; v2 ; vj:

For example, the system represented by

TR = G(R,P)

may have the ASP definition

P(1,1)=e 1 ; P(1,2)=e2 ; --- P(1,n)=en:

or

G(1)=e1; G(2)=e2; --- G(n)=en:

VARIABLES: R; P; G:

If "computational" equations facilitate the writing of

the differential equations, they are specified as

EQUATIONS: vi=e 1 ; v2=e2; --- vn=en:
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Su.mm q tions are indicated by the AaP function

lsf1A(V=k 1 t k ; e)

To illu-trace the way the -- I.QUATION statement and the

summation function are used consider the system of

equations

Yi = Y i/ (X1+Y2+Y1)

-Phis sys tear xPay be written

Y(1,1)=Y(i) /H; Y(192)=Y(2)/A; Y(1	 Y(3)/R:

NUATIONS: 3=SIGMA(I =1v3; Y(I)); ^=sQ.^r( >):

SIG MA may only appear i.n asFignment statement , of the

form v=e I +e2 *SIGMA( --- ) , and its use ::; re-s tricted to

the EQUATION and DY+, AXIC Ftatements . The summand in

the SIGMA function may oonteAn. nested sutzris such as the

double sum

S2y3"IGMA(I=1,1u; A(I)* Grn(J =1,5; B(I.J)))

The si?e of arras	 -.j. g7es.r in the program other

than Y and F 18' t lant-mitted by

ARHAYS: v 1 ( k 1 ); v2 %) ; --- vn(k 
n ):_—

where k denotes a vector of seven or le g s elemen.ts.

A convenient ay to initialize arrays is to use

DATA: v i , v2 , --- V	 k , *c , k2 *c 2 , --- kn*cn:
1

or

TA .TLAIR: list; format:

The construction of these statements is best exemplified.
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by their ASP Fortran translations

DATA vi , v2 , --- vn / ki*a i , k2*c2 , --- kn*cn /

and

READ (5,xx) list

xx FORMAT ( format)

One procedure to initialize the matrices

	

1 2 3	 2 3 4

	

A= 1 2 3	 B= 3 4 5

	

1 2 3	 4 5 6

Is to specify

ARRAYS: A093); B OO):
DATA A: 3*1.0 9 3*2.0, 3 *3.0:
TABULAR: t(B(1 9 J), I=1,3) 9 J=1,3) ; 3F5.1:

The data cards associated with each TABULAR statement

follow the ASP program, and are arranged in the order

requested. Statements used 'to represent parameters and

Fortran arithmetic functions are of the form

PARAMETERS: v 1=c 1 ; v2=c2 ; --- vn=cn:

FUNCTIONS: v1(_v 1 )=e 1 ; v,( v2 )-e2 ; --- vn(vn)=ens

The interval of integration and the print incremen^ are

defined in

	

INTERVAL: cl;	 c2 .	 PRINT: c3(default-l.0):

Backward integration is implicitly defined by c1)c2.

c3 must be positive, and normally the solution will be

t
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printed for Twc i w c 1+c ,9 --- c 1+kc 3
, 0 2 . Initial

conditions are given with

INITIAL: Y(1) =e 1 ; Y(2) .=e; --- Y(n)=en:

Frequently, it Is necessary to have functions dependent

on the integrated values printed out along with the

solution.. This is accomplished by including

DYNAMIC: vI=e ; v
2 2
=e --- v we :

1	 n n
Another useful calculation associated with solutions

of differential equations is the evaluation of Integrals.

Integration is specified in general by

INTEGRAL(v; e)

The limits of integration are assumed, to be those in

the INTERVAL statement. For example to evaluate

A _ e xp(-T) Y 1 dT

It is necessary to include

INTEGRAL(A;EXP(-T)*Y(1)):

If the differential equations contain indeterminate

forms over the interval of integration the limiting

values are defined as

SINGULAR: T=c; F(1)=e 1 ; F(2)=e2 ; --- F(n)=en:

The default value for a bound on the relative truncation

error per step is 10 -5 . This may be changed by stating

PRECISION: k:

If kA5 a single precision program is written, and double

precision if k *05. When defining a double precision
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programo it is necessary to use the corresponding double

precision Fortran functions if any appear in the ASP

expressions. If a fixed step length and no automatic

truncation error testing or step length modification

Is desired

STEP: c 1 i c :
2

must be included. The step length will have the value

c 1 . The constant c2 is optional and If inserted

signifies that truncation error testing is to be resumed

when the independent variable of integration is greater

than c 2 . A heading to be printed on each page of output

Is denoted

HEADING: 80 or Less alphanumeric chaxact.ars:

Comments may be inserted anywhere in the program and

are enclosed by double quotes

any appropriate comment 1+

To have a condensed version of the output written on a

ftik so that a listing on the remote terminal is possible

the statement

OUTPUT: TERMINAL:

must be included.
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eXAMPLE►3

For the first example a restricted three body

problemf (earth-moon-spaceship) is considered

d 2 x	 dy
-- = x + 2-- - a'(x + g) - a(x - g')
dt2 	 dt

d 2 y	 dx
= y - 2— - sx' y - ay

dt2	 dt

with

g _ 1/82.45, g ' - 1 - g

a = g / (( X - 6 1 ) + Y
2

) , a' = g' / ( ( x + g ) 2 + Y2)

and initial values

t=0 9 x0=1.2, x01 =01P Y0=0, yo=-1.04935750983•

The solution x(t), y(t) is a closed orbit with period

t=6.192169331396. After a change of variable ,to rewrite

the equations as a first order system an ASP program for

this example is

SOLVE; ODE:

F( 1 ) =U(3); F(2)=U(4);

F(3)=U(1)+2.0*U(4)-AP*(U(1)+g)-A*(U(1)-GP);

F(4)=U(2)-2.0 *U(3)-U(2) *(AP+A):

VARIABLES: T; U; F:

EQUATIONS: A=G/DSQRT ((U (1) -Gf) **2+U (2) **2) ** 3 ;

AP=GP/DSQRT((U(1)+G)**2+U(2)**2)**3:

t
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PARAMETEdR3: G=1.2128562765312D-2;

GP=9.8787143723469D-1:

INITIAL: U(1)=1.2D+O; U(2)=O.OD+0; U(3)=0.0 1>+O;

U(4) =-1.04935750983:

PRECISION: 9: PRINT: 6.192169331396D-1:

INTERVAL: 0.0D+0; 6.192169331396:

HEADING: RESTRICTED -BODY PROBLEM::

Two successive colons indicate the end of the ASP

program. The resulting solution is listed in Appendix B.

The next example is a solution of the regular

Coulomb function  which satisfies the differential

equation

d 
2 w	 L(L+1)-+ (1 -2^-- --)w=0

dr

for L=09 1Z =1/2. An ASP program to solve this equation is

SOLVE; ODE:

W(191)=W(2)

W(1, 2) =(-1.0+2.O*ETA,/RHO-.EL*(EL+1)/RHO**2) *W(1) :

VARIABLES: RHO; W; F:

PARXgETERS: EL=0.0; ETA=0.5; CL=3.7 66858E-1:

INITIAL: W(1)=0.0; W(2)=CL:

SINGULAR: RHO=0.0; W(1,1)=CL; W(1,2)=CL:

HEADING: COULOMB FUNCTION:

INTERVAL: 0.0; 10.0: PRINT: 1.0::

The solution from this program is also in Appendix B.
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APPENDIX A

SUMMARY OF THE LANGUAGE ELEMENTS

ARRAYS: v1 ( k1 ); v2 ( k2 ); --- vn(kn):

DYNAMIC: v1=e 1 ; v2=e 2 ; --- vn=en:

EQUATIONS: v1=e 1 ; v2=e2 ' --- vn=en:

FUNCTIONS: v 1 (tr1 )-e 1 ; v2 (_v2 )=e2 ; --- vn(vn)=en:

HEADING: 80 or less alphanumeric characters :

INITIAL: Y(1)=e 1 ; Y(2)=e2 ; --- Y(n)=en:

INTEGRAL(v; e) :

INTERVAL: c 1 ; c2:

OUTPUT: TERMINAL:

PARAMETERS: v1=c 1 ; v2=c2 ; --- vn=cn;

PRECISION: k:

PRINT: c:

SIGMA(v-k 1 ,k2 ; e)

STEP: c 1 ; c2:

TABULAR: list; format:

DATA: v1 , v2 , --- vn; k 1 *c 1 • k2 *c2 , --- kn*cn:

VARIABLES: v 1 ; v2 ; v3

11 any comment It
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APPENDIX B

PROGRAM OUTPUT

ASP (ODE-A) PROGRAM^OU'rPUT 	 RESTRICTED 3 BODY PROBLEM

PARAMET Eh3
G= 1.212856276531D-02 	 GP= 9.8787143723469D-01

t

T

6.192169331396OD-01
1.2384338662?92D 00
1 . 857650799 4188D 00
2.4768677325584D 00
3.0960846656980D 00
3.71530 1 59 88376D 00
4.3345185319772D 00
4 .953735465 11 68D 00
5.57295239 82564D 00
6.1921693313960D 00

U(I), I=1 9 NE OR U(I)/F(I)o I=19NE
1.2000000000000D 00 0.0
9.035630853246OD-01 - 5. 1736905428703D-01
-4

.16989o8458685D-01 -3.9249027884245D-01

.3088791432671D-01 -5.8767318174133D-01
-9.9989012077892D-01 -5.5615662740507D-01
- 1.26245435 43930D 00 7.6927307460315D-09
-9.99890139246oOD-01 5.5615665735015D-01
-4.3o88793941594D-01 5.8767326387986D-01
3.1698904539412D-01 3.924901665964ID-01
9.035630772 4612D-01 5.1736901733676D-01
1.2000000307160D 00 -3.3585912751935D-08

-INP F, GRATION STEPS = 2776-
-'TRUNCATION ERROR / STEP LESS THAN 1-OD-09

ASP (ODE-A) PROGRAM OUTPUT 	 COULOMB FUNCTION

PARAMETERS
EL= 0.0
CL= 3.766858E -o1

ETA= 5.000000E-01

RHO	 W(I)q I=ltNE
0.0	 0.0
1.000000E 00 5.166003E-01
2.000000E 00 1.021117E 00
3.000000E 00 1.043202E 00
4.000000E oo 4.192396E -o1
5.000000E 00 -4.904488; -01
6.000000E 00 -1.028593E 00
7.000000E 00 -7.674270E-01
8.000000E 00 1.035077E-01
9.000000E 00 8.880071E-01
1.000000E 01 9.391693E-01

OR W(I)/F(I) o I=1,NE
3.766858E-01
5.929234E-01
3.296ol8E-o1

-3.1698941-,'-01
-8.667134E-01
-8.331279E-01
-1.643893E-01
6.531553E-01
9.621581E-01
4.885538E-01
-3.957638E-01

-INTEGRATION STEPS = 122-
-TRUNCATION .̀ERROR / STEP LESS THAN 1.0E-05
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APPENDIX C

JCL AND DECK SETUP

,fob card

//JOBLIB DD DSN=SYSI.SNOBOL.DISP =SHR

// EXEC ASP

//ASP .INPUT DD *

ASP program

//GO.DATAS DD *

data cards specified by TABULAR statements
arranged in the order requested

i

.I
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