60 research outputs found

    Advies over de ontwikkeling van modellen voor het Natuurplanbureau

    Get PDF

    User manual for SAFE (Select Application date For Evaluation) to support the use of the GEM scenarios for cultivations in glasshouses

    Get PDF
    For the assessment of the environmental risks of the use of plant protection products in glasshouse cultivations, exposure scenarios have been developed. These scenarios have been implemented in the Glasshouse Emission Model (GEM). Because the application can cover the entire plant growth cycle, additional guidance was needed to select the application date with the highest Predicted Environmental Concentration for the assessment of leaching to ground water in soil-bound cultivations and that of exposure of aquatic organisms in soilless cultivations. The software tool SAFE (Select Application date For Evaluation) has been developed to assist the user with the selection of the application date. Two variants of this tool have been developed: one for soil-bound cultivations and one for soilless cultivations. The use of both variants is described in this user manual

    Ruimtelijke samenhang en genetische variatie van boomkikkerpopulaties in Nederland

    Get PDF
    Een modelanalyse van de ruimtelijke samenhang heeft plaatsgevonden van een netwerkpopulatie van de boomkikker (Hyla arborea) in Midden-Limburg. De bezettingskans van poelen is bepaald met een regressiemodel en de ruimtelijke samenhang van de leefgebieden is geanalyseerd met het dispersiemodel Smallsteps. Het herstel-scenario 2010 biedt goede potenties voor de uitbreiding van de netwerkpopulatie. Er zijn echter nog enkele zwakke schakels in de ruimtelijke samenhang geconstateerd. Bovendien dient door het nemen van maatregelen nog meer in het huidige verspreidingsgebied van de boomkikker geinvesteerd te worden. Een genetische analyse in de Achterhoek maakt aannemelijk dat herkolonisatie heeft plaatsgevonden vanuit vier bronpopulaties. Hierbij zijn vier populatieclusters ontstaan die genetisch sterk verschillend zijn. De genetische diversiteit in de Doort (Midden-Limburg) is vergelijkbaar met populaties in de Achterhoek maar kleiner dan in twee Zwitserse populatie

    The use of ecological models to assess the effects of a plant protection product on ecosystem services provided by an orchard

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record The objective of this case study was to explore the feasibility of using ecological models for applying an ecosystem services-based approach to environmental risk assessment using currently available data and methodologies. For this we used a 5 step approach: 1) selection of environmental scenario, 2) ecosystem service selection, 3) development of logic chains, 4) selection and application of ecological models and 5) detailed ecosystem service assessment. The study system is a European apple orchard managed according to integrated pest management principles. An organophosphate insecticide was used as the case study chemical. Four ecosystem services are included in this case study: soil quality regulation, pest control, pollination and recreation. Logic chains were developed for each ecosystem service and describe the link between toxicant effects on service providing units and ecosystem services delivery. For the soil quality regulation ecosystem service, springtails and earthworms were the service providing units, for the pest control ecosystem service it was ladybirds, for the pollination ecosystem service it was honeybees and for the recreation ecosystem service it was the meadow brown butterfly. All the ecological models addressed the spatio-temporal magnitude of the direct effects of the insecticide on the service providing units and ecological production functions were used to extrapolate these outcomes to the delivery of ecosystem services. For all ecosystem services a decision on the acceptability of the modelled and extrapolated effects on the service providing units could be made using the protection goals as set by the European Food Safety Authority (EFSA). Developing quantitative ecological production functions for extrapolation of ecosystem services delivery from population endpoints remains one of the major challenges. We feel that the use of ecological models can greatly add to this development, although the further development of existing ecological models, and of new models, is needed for this.European Chemical Industry Counci

    Introducing the INSIGNIA project: environmental monitoring of pesticide use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides by honey bees. It is a 30-month pilot project initiated and financed by the EC (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of 1 km radius, increasing to several km if required, depending on the availability and attractiveness of food. All material collected is accumulated in the hive.The honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. Because of the non-destructive remit of the project, for pesticides, pollen is the focal matrix and used as trapped pollen and beebread in this study. Although beeswax can be used as a passive sampler for pesticides, this matrix is not being used in INSIGNIA because of its polarity dependent absorbance, which limits the required wide range of pesticides to be monitored. Alternatively, two innovative non-biological matrices are being tested: i) the “Beehold tube”, a tube lined with the generic absorbent polyethylene-glycol PEG, through which hive-entering bees are forced to pass, and ii) the “APIStrip” (Absorbing Pesticides In-hive Strips) with a specific pesticide absorbent which is hung between the bee combs.Beebread and pollen collected in pollen traps are being sampled every two weeks to be analysed for pesticide residues and to record foraging conditions. Trapped pollen provides snapshots of the foraging conditions and contaminants on a single day. During the active season, the majority of beebread is consumed within days, so beebread provides recent, random sampling results. The Beehold tube and the APIStrips are present throughout the 2-weeks sampling periods in the beehive, absorbing and accumulating the incoming contaminants. The four matrices i.e. trapped pollen, beebread, Beehold tubes and APIStrips will be analysed for the presence of pesticides. The botanical origin of trapped pollen, beebread and pollen in the Beehold tubes will also be determined with an innovative molecular technique. Data on pollen and pesticide presence will then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and rigorously tested in four countries in Year 1, and the best practices will then be ring-tested in nine countries in Year 2. Information about the course of the project, its results and publications will be available on the INSIGNIA website www.insignia-bee.eu and via social media: on Facebook (https://www.facebook.com/insigniabee.eu/); Instagram insignia_bee); and Twitter (insignia_bee). Although the analyses of pesticide residues and pollen identification will not be completed until December 2019, in my talk I will present preliminary results of the Year 1 sampling.info:eu-repo/semantics/publishedVersio

    Introducing the INSIGNIA project: Environmental monitoring of pesticides use through honey bees

    Get PDF
    INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides via honey bees. It is a pilot project initiated and financed by the European Commission (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, chemistry, molecular biology, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of about 1 km radius, increasing to several km if required depending on the availability and attractiveness of food. All material collected is concentrated in the hive, and the honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. For pesticides, pollen and wax are the focal matrices. Pollen collected in pollen traps will be sampled every two weeks to record foraging conditions. During the season, most of pollen is consumed within days, so beebread can provide recent, random sampling results. On the other hand wax acts as a passive sampler, building up an archive of pesticides that have entered the hive. Alternative in-hive passive samplers will be tested to replicate wax as a “pesticide-sponge”. Samples will be analysed for the presence of pesticides and the botanical origin of the pollen using an ITS2 DNA metabarcoding approach. Data on pollen and pesticides will be then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and tested in four countries in year 1, and the best practices will then be ring-tested in nine countries in year 2. Information about the course of the project and its results and publications will be available in the INSIGNIA website www.insignia-bee.eu.info:eu-repo/semantics/publishedVersio
    corecore