2,980 research outputs found

    Superconducting niobium thin film slow-wave structures

    Get PDF
    A superconducting comb structure as a slow-wave element in a traveling-wave maser will significantly improve maser noise temperature and gain by reducing the insertion loss. The results of the insertion loss measurements of superconducting niobium slow-wave structures subjected to maser operating conditions at X-Band frequencies are presented

    Atomic Processes in Planetary Nebulae and H II Regions

    Full text link
    Spectroscopic studies of Planetary Nebulae (PNe) and H {\sc ii} regions have driven much development in atomic physics. In the last few years the combination of a generation of powerful observatories, the development of ever more sophisticated spectral modeling codes, and large efforts on mass production of high quality atomic data have led to important progress in our understanding of the atomic spectra of such astronomical objects. In this paper I review such progress, including evaluations of atomic data by comparisons with nebular spectra, detection of spectral lines from most iron-peak elements and n-capture elements, observations of hyperfine emission lines and analysis of isotopic abundances, fluorescent processes, and new techniques for diagnosing physical conditions based on recombination spectra. The review is directed toward atomic physicists and spectroscopists trying to establish the current status of the atomic data and models and to know the main standing issues.Comment: 9 pages, 1 figur

    Loop Quantization of the Supersymmetric Two-Dimensional BF Model

    Full text link
    In this paper we consider the quantization of the 2d BF model coupled to topological matter. Guided by the rigid supersymmetry this system can be viewed as a super-BF model, where the field content is expressed in terms of superfields. A canonical analysis is done and the constraints are then implemented at the quantum level in order to construct the Hilbert space of the theory under the perspective of Loop Quantum Gravity methods.Comment: 17 pages, Late

    Particle production azimuthal asymmetries in a clustering of color sources model

    Full text link
    The collective interactions of many partons in the first stage of the collisions is the usual accepted explanation of the sizable elliptical flow. The clustering of color sources provides a framework of partonic interactions. In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c in both the dependence of v2 transverse momentum and in the shape of the nuclear modified factor on the azimuthal angle for different centralities. We show the predictions at LHC energies for Pb-Pb. In the case of proton-proton collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics

    Comparison of engagement and emotional responses of older and younger adults interacting with 3D cultural heritage artefacts on personal devices

    Get PDF
    The availability of advanced software and less expensive hardware allows museums to preserve and share artefacts digitally. As a result, museums are frequently making their collections accessible online as interactive, 3D models. This could lead to the unique situation of viewing the digital artefact before the physical artefact. Experiencing artefacts digitally outside of the museum on personal devices may affect the user's ability to emotionally connect to the artefacts. This study examines how two target populations of young adults (18–21 years) and the elderly (65 years and older) responded to seeing cultural heritage artefacts in three different modalities: augmented reality on a tablet, 3D models on a laptop, and then physical artefacts. Specifically, the time spent, enjoyment, and emotional responses were analysed. Results revealed that regardless of age, the digital modalities were enjoyable and encouraged emotional responses. Seeing the physical artefacts after the digital ones did not lessen their enjoyment or emotions felt. These findings aim to provide an insight into the effectiveness of 3D artefacts viewed on personal devices and artefacts shown outside of the museum for encouraging emotional responses from older and younger people

    Predicted FeII Emission-Line Strengths from Active Galactic Nuclei

    Full text link
    We present theoretical FeII emission line strengths for physical conditions typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line strengths were computed with a precise treatment of radiative transfer using extensive and accurate atomic data from the Iron Project. Excitation mechanisms for the FeII emission included continuum fluorescence, collisional excitation, self-fluorescence amoung the FeII transitions, and fluorescent excitation by Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine structure levels (including states to E ~ 15 eV) was used to predict fluxes for approximately 23,000 FeII transitions, covering most of the UV, optical, and IR wavelengths of astrophysical interest. Spectral synthesis for wavelengths from 1600 Angstroms to 1.2 microns is presented. Applications of present theoretical templates to the analysis of observations are described. In particular, we discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1 micron region which are predicted by the Lyman-alpha fluorescence mechanism. We also compare our UV spectral synthesis with an empirical iron template for the prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template presented in this work should also applicable to a variety of objects with FeII spectra formed under similar excitation conditions, such as supernovae and symbiotic stars.Comment: 33 pages, 15 postscript figure

    Sublimation Pressures of Refractory Fluorides

    Get PDF
    Vapor species identification, absolute vapor pressures and heats of sublimation of refractory metal fluoride

    Pumping up the [N I] nebular lines

    Get PDF
    The optical [N I] doublet near 5200 {\AA} is anomalously strong in a variety of emission-line objects. We compute a detailed photoionization model and use it to show that pumping by far-ultraviolet (FUV) stellar radiation previously posited as a general explanation applies to the Orion Nebula (M42) and its companion M43; but, it is unlikely to explain planetary nebulae and supernova remnants. Our models establish that the observed nearly constant equivalent width of [N I] with respect to the dust-scattered stellar continuum depends primarily on three factors: the FUV to visual-band flux ratio of the stellar population; the optical properties of the dust; and the line broadening where the pumping occurs. In contrast, the intensity ratio [N I]/H{\beta} depends primarily on the FUV to extreme-ultraviolet ratio, which varies strongly with the spectral type of the exciting star. This is consistent with the observed difference of a factor of five between M42 and M43, which are excited by an O7 and B0.5 star respectively. We derive a non-thermal broadening of order 5 km/s for the [N I] pumping zone and show that the broadening mechanism must be different from the large-scale turbulent motions that have been suggested to explain the line-widths in this H II region. A mechanism is required that operates at scales of a few astronomical units, which may be driven by thermal instabilities of neutral gas in the range 1000 to 3000 K. In an appendix, we describe how collisional and radiative processes are treated in the detailed model N I atom now included in the Cloudy plasma code.Comment: ApJ in press. 8 pages of main paper plus 11 pages of appendices, with 13 figures and 12 table

    Canonical Analysis of the Jackiw-Teitelboim Model in the Temporal Gauge. I. The Classical Theory

    Full text link
    As a preparation for its quantization in the loop formalism, the 2-dimensional gravitation model of Jackiw and Teitelboim is analysed in the classical canonical formalism. The dynamics is of pure constraints as it is well-known. A partial gauge fixing of the temporal type being performed, the resulting second class constraints are sorted out and the corresponding Dirac bracket algebra is worked out. Dirac observables of this classical theory are then calculated.Comment: 15 pages, Latex. Misprint correction

    Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect

    Get PDF
    We investigate the weak decay of uniformly {\em accelerated protons} in the context of {\em standard} Quantum Field Theory. Because the mean {\em proper} lifetime of a particle is a scalar, the same value for this observable must be obtained in the inertial and coaccelerated frames. We are only able to achieve this equality by considering the Fulling-Davies-Unruh effect. This reflects the fact that the Fulling-Davies-Unruh effect is mandatory for the consistency of Quantum Field Theory. There is no question about its existence provided one accepts the validity of standard Quantum Field Theory in flat spacetime.Comment: 4 pages (revtex), 1 figure, to appear in Phys. Rev. Let
    • …
    corecore