185 research outputs found

    Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications

    Get PDF
    In this work, we present an enhanced design for a Brillouin ring laser (BRL), which employs a double resonant cavity (DRC) with short fiber length, paired with a heterodyne-based wavelength-locking system, to be employed as a pump-probe source for Brillouin sensing. The enhanced source is compared to traditional long-cavity pump-probe source, showing a significantly lower relative intensity noise (~-145 dB/Hz in the whole 0\u2013800 MHz range), a narrow linewidth (10 kHz), and large tunability features, resulting in an effective pump-probe source in BOTDA systems, with an excellent pump-probe frequency stability (~200 Hz), which is uncommon for fiber lasers. The enhanced source showed an improved signal-to-noise ratio (SNR) of about 22 dB with respect to standard BRL schemes, resulting in an improved temperature/strain resolution in BOTDA applications up to 5.5 dB, with respect to previous high-noise BRL designs

    Optical fiber sensing cables for brillouin-based distributed measurements

    Get PDF
    Brillouin distributed optical fiber sensing (Brillouin D-FOS) is a powerful technology for real-time in situ monitoring of various physical quantities, such as strain, temperature, and pressure. Compared to local or multi-point fiber optic sensing techniques, in Brillouin-based sensing, the optical fiber is interrogated along its complete length with a resolution down to decimeters and with a frequency encoding of the measure information that is not affected by changes in the optical attenuation. The fiber sensing cable plays a significant role since it must ensure a low optical loss and optimal transfer of the measured parameters for a long time and in harsh conditions, e.g., the presence of moisture, corrosion, and relevant mechanical or thermal stresses. In this paper, research and application regarding optical fiber cables for Brillouin distributed sensing are reviewed, connected, and extended. It is shown how appropriate cable design can give a significant contribution toward the successful exploitation of the Brillouin D-FOS technique

    Determination of the thin film structure of zwitterion doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate): a neutron reflectivity study

    Get PDF
    Doping poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity, however little is known about the thin film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with diferent concentrations of the zwiterion 3-(N,N Dimethylmyristylammonio)propanesulfonate (DYMAP), and its effect on the bulk structure of the films characterized by neutron reflectivity. The results show that at low doping concentration, the film separates into a quasi bi-layer structure with lower roughness, (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However when the doping concentration increases the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy and profilometry measurements confirmed these findings, and AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi bi-layer structure of the lowest concentration doped PEDOT:PSS is separated by a graded rather than a well defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films that should be prove important for device applications

    Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea

    Get PDF
    Coastal lagoons are highly productive ecosystems, which are experiencing a variety of human disturbances at increasing frequency. Bacteria are key ecological players within lagoons, yet little is known about the magnitude, patterns and drivers of diversity in these transitional environments. We carried out a seasonal study in the Venice Lagoon (Italy) and the adjacent sea, to simultaneously explore diversity patterns in different domains (pelagic, benthic) and their spatio-temporal variability, and test the role of environmental gradients in structuring assemblages. Community composition differed between lagoon and open sea, and between domains. The dominant phyla varied temporally, with varying trends for the two domains, suggesting different environmental constraints on the assemblages. The percentage of freshwater taxa within the lagoon increased during higher river run-off, pointing at the lagoon as a dynamic mosaic of microbial taxa that generate the metacommunity across the whole hydrological continuum. Seasonality was more important than spatial variability in shaping assemblages. Network analyses indicated more interactions between several genera and environmental variables in the open sea than the lagoon. Our study provides evidences for a temporally dynamic nature of bacterial assemblages in lagoons and suggests that an interplay of seasonally influenced environmental drivers shape assemblages in these vulnerable ecosystems

    A Model-Assisted Probability of Detection Framework for Optical Fiber Sensors

    Get PDF
    Optical fiber sensors (OFSs) represent an efficient sensing solution in various structural health monitoring (SHM) applications. However, a well-defined methodology is still missing to quantify their damage detection performance, preventing their certification and full deployment in SHM. In a recent study, the authors proposed an experimental methodology to qualify distributed OFSs using the concept of probability of detection (POD). Nevertheless, POD curves require considerable testing, which is often not feasible. This study takes a step forward, presenting a model-assisted POD (MAPOD) approach for the first time applied to distributed OFSs (DOFSs). The new MAPOD framework applied to DOFSs is validated through previous experimental results, considering the mode I delamination monitoring of a double-cantilever beam (DCB) specimen under quasi-static loading conditions. The results show how strain transfer, loading conditions, human factors, interrogator resolution, and noise can alter the damage detection capabilities of DOFSs. This MAPOD approach represents a tool to study the effects of varying environmental and operational conditions on SHM systems based on DOFSs and for the design optimization of the monitoring system

    Post-sigh sleep apneas in mice: Systematic review and data-driven definition

    Get PDF
    Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake\u2013sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively

    Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice

    Get PDF
    Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life

    Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome

    Get PDF
    Study objectives: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. Methods: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. Results: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. Conclusions: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies

    Neural control of fasting-induced torpor in mice

    Get PDF
    Torpor is a peculiar mammalian behaviour, characterized by the active reduction of metabolic rate, followed by a drop in body temperature. To enter torpor, the activation of all thermogenic organs that could potentially defend body temperature must be prevented. Most of these organs, such as the brown adipose tissue, are controlled by the key thermoregulatory region of the Raphe Pallidus (RPa). Currently, it is not known which brain areas mediate the entrance into torpor. To identify these areas, the expression of the early gene c-Fos at torpor onset was assessed in different brain regions in mice injected with a retrograde tracer (Cholera Toxin subunit b, CTb) into the RPa region. The results show a network of hypothalamic neurons that are specifically activated at torpor onset and a direct torpor-specific projection from the Dorsomedial Hypothalamus to the RPa that could putatively mediate the suppression of thermogenesis during torpor
    corecore