1,493 research outputs found
Controlling the effective mass of quantum well states in Pb/Si(111) by interface engineering
The in-plane effective mass of quantum well states in thin Pb films on a Bi
reconstructed Si(111) surface is studied by angle-resolved photoemission
spectroscopy. It is found that this effective mass is a factor of three lower
than the unusually high values reported for Pb films grown on a Pb
reconstructed Si(111) surface. Through a quantitative low-energy electron
diffraction analysis the change in effective mass as a function of coverage and
for the different interfaces is linked to a change of around 2% in the in-plane
lattice constant. To corroborate this correlation, density functional theory
calculations were performed on freestanding Pb slabs with different in-plane
lattice constants. These calculations show an anomalous dependence of the
effective mass on the lattice constant including a change of sign for values
close to the lattice constant of Si(111). This unexpected relation is due to a
combination of reduced orbital overlap of the 6p_z states and altered
hybridization between the 6p_z and 6p_xy derived quantum well states.
Furthermore it is shown by core level spectroscopy that the Pb films are
structurally and temporally stable at temperatures below 100 K.Comment: 7 pages, 6 figure
External Potential Modifies Friction of Molecular Solutes in Water
Stokes’s law for the friction of a sphere in water has been argued to work down to molecular scales, provided the effective hydrodynamic radius includes the hydration layer. In interpretations of experiments and in theoretical models, it is tacitly assumed that the solvent friction experienced by a solute does not depend on whether an external confinement potential acts on the solute. Using a novel method to extract the friction memory function from molecular dynamics simulations, we show that the solvent friction of a strongly harmonically confined methane molecule in water increases by 60% compared to its free-solution value, which is caused by an amplification of the slowest component of the memory function. The friction enhancement occurs for potential strengths typical of physical and chemical bonds and is accompanied by a significant slowing-down of the hydration water dynamics. Thus, the solvent friction acting on molecular solutes is not determined by solvent properties and solute-solvent interactions alone but results from the coupling between solute and solvent dynamics and thereby can be tuned by an external potential acting on the solute. This also explains why simulations of positionally constrained solutes do not reproduce free-solution diffusivities. Dynamic scaling arguments suggest similar effects also for macromolecular solutes provided the solution viscosity is sufficiently enhanced
Mapping of 2+1-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimer
We show that a 2+1 dimensional discrete surface growth model exhibiting
Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional
conserved lattice gas model of directed dimers. In case of KPZ height
anisotropy the dimers follow driven diffusive motion. We confirm by numerical
simulations that the scaling exponents of the dimer model are in agreement with
those of the 2+1 dimensional KPZ class. This opens up the possibility of
analyzing growth models via reaction-diffusion models, which allow much more
efficient computer simulations.Comment: 5 pages, 4 figures, final form to appear in PR
CRAF R391W is a melanoma driver oncogene.
Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas
Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes.
BackgroundMalignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with few treatment options. Tumor immune state has not been characterized in MPNST, and is important in determining response to immune checkpoint blockade. Our aim was to evaluate the expression of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and presence of CD8+ tumor infiltrating lymphocytes (TILs) in MPNST, and correlate these findings with clinical behavior and outcome.ResultsPD-L1 staining of at least 1% was seen in 0/20 nerves, 2/68 benign lesions and 9/53 MPNST. Two of 68 benign lesions and 7/53 (13%) MPNST had at least 5% PD-L1 staining. CD8 staining of at least 5% was seen in 1/20 (5%) nerves, 45/68 (66%) benign lesions and 30/53 (57%) MPNST. PD-L1 was statistically more prevalent in MPNST than both nerves and benign lesions (p=0.049 and p=0.008, respectively). Expression of PD-1 was absent in all tissue specimens. There was no correlation of PD-L1 or CD8 expression with disease state (primary versus metastatic) or patient survival.MethodsA comprehensive PNST tissue microarray was created from 141 surgical specimens including primary, recurrent, and metastatic MPNST (n=53), neurofibromas (n=57), schwannoma (n=11), and normal nerve (n=20). Cores were stained in triplicate for PD-L1, PD-1, and CD8, and expression compared between tumor types. These data were then examined for survival correlates in 35 patients with primary MPNST.ConclusionsMPNST is characterized by low PD-L1 and absent PD-1 expression with significant CD8+ TIL presence. MPNST immune microenvironment does not correlate with patient outcome
Real space tests of the statistical isotropy and Gaussianity of the WMAP CMB data
ABRIDGED: We introduce and analyze a method for testing statistical isotropy
and Gaussianity and apply it to the WMAP CMB foreground reduced, temperature
maps, and cross-channel difference maps. We divide the sky into regions of
varying size and shape and measure the first four moments of the one-point
distribution within these regions, and using their simulated spatial
distributions we test the statistical isotropy and Gaussianity hypotheses. By
randomly varying orientations of these regions, we sample the underlying CMB
field in a new manner, that offers a richer exploration of the data content,
and avoids possible biasing due to a single choice of sky division. The
statistical significance is assessed via comparison with realistic Monte-Carlo
simulations.
We find the three-year WMAP maps to agree well with the isotropic, Gaussian
random field simulations as probed by regions corresponding to the angular
scales ranging from 6 deg to 30 deg at 68% confidence level. We report a
strong, anomalous (99.8% CL) dipole ``excess'' in the V band of the three-year
WMAP data and also in the V band of the WMAP five-year data (99.3% CL). We
notice the large scale hemispherical power asymmetry, and find that it is not
highly statistically significant in the WMAP three-year data (<~ 97%) at scales
l <= 40. The significance is even smaller if multipoles up to l=1024 are
considered (~90% CL). We give constraints on the amplitude of the
previously-proposed CMB dipole modulation field parameter. We easily detect the
residual foregrounds in cross-band difference maps at rms level <~ 7 \mu K (at
scales >~ 6 deg) and limit the systematical uncertainties to <~ 1.7 \mu K (at
scales >~ 30 deg).Comment: 20 pages, 20 figures; more tests added; updated to match the version
to be published in JCA
When does cyclic dominance lead to stable spiral waves?
Species diversity in ecosystems is often accompanied by characteristic spatio-temporal patterns. Here, we consider a generic two-dimensional population model and study the spiraling patterns arising from the combined effects of cyclic dominance of three species, mutation, pair-exchange and individual hopping. The dynamics is characterized by nonlinear mobility and a Hopf bifurcation around which the system's four-phase state diagram is inferred from a complex Ginzburg-Landau equation derived using a perturbative multiscale expansion. While the dynamics is generally characterized by spiraling patterns, we show that spiral waves are stable in only one of the four phases. Furthermore, we characterize a phase where nonlinearity leads to the annihilation of spirals and to the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the coexistence fixed point is unstable, the spiraling patterns are also affected by the nonlinear diffusion
Discovery of Two Gravitationally Lensed Quasars with Image Separations of 3 Arcseconds from the Sloan Digital Sky Survey
We report the discovery of two doubly-imaged quasars, SDSS
J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and
1.789 and with image separations of 2.86'' and 2.90'', respectively. The
objects were selected as lens candidates from the Sloan Digital Sky Survey
(SDSS). Based on the identical nature of the spectra of the two quasars in each
pair and the identification of the lens galaxies, we conclude that the objects
are gravitational lenses. The lenses are complicated; in both systems there are
several galaxies in the fields very close to the quasars, in addition to the
lens galaxies themselves. The lens modeling implies that these nearby galaxies
contribute significantly to the lens potentials. On larger scales, we have
detected an enhancement in the galaxy density near SDSS J100128.61+502756.9.
The number of lenses with image separation of ~3'' in the SDSS already exceeds
the prediction of simple theoretical models based on the standard
Lambda-dominated cosmology and observed velocity function of galaxies.Comment: 24 pages, 9 figures, accepted for publication in Ap
- …
