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Stokes’s law for the friction of a sphere in water has been argued to work down to molecular scales,
provided the effective hydrodynamic radius includes the hydration layer. In interpretations of experiments
and in theoretical models, it is tacitly assumed that the solvent friction experienced by a solute does not
depend on whether an external confinement potential acts on the solute. Using a novel method to extract the
friction memory function from molecular dynamics simulations, we show that the solvent friction of a
strongly harmonically confined methane molecule in water increases by 60% compared to its free-solution
value, which is caused by an amplification of the slowest component of the memory function. The friction
enhancement occurs for potential strengths typical of physical and chemical bonds and is accompanied by a
significant slowing-down of the hydration water dynamics. Thus, the solvent friction acting on molecular
solutes is not determined by solvent properties and solute-solvent interactions alone but results from the
coupling between solute and solvent dynamics and thereby can be tuned by an external potential acting
on the solute. This also explains why simulations of positionally constrained solutes do not reproduce
free-solution diffusivities. Dynamic scaling arguments suggest similar effects also for macromolecular
solutes provided the solution viscosity is sufficiently enhanced.

DOI: 10.1103/PhysRevX.7.041065 Subject Areas: Chemical Physics, Soft Matter,
Statistical Physics

I. INTRODUCTION

Friction sets the fundamental time scale for all processes
that occur in a solvent, ranging from molecular diffusion
[1], macromolecular conformational changes [2,3], and
chemical reactions [4], to protein folding [5,6]. For a sphere
with radius R in a continuous solvent with viscosity η, the
no-slip friction coefficient γ follows Stokes’s law γ¼6πηR,
so that the friction force Ff is for small enough velocity v
given by Ff ¼ γv. Modifications of Stokes’s law due to
water discreteness and water-solute interactions have been
amply discussed [1,7]. In this paper we discuss a different
modification of Stokes’s law, demonstrated by molecular
dynamics (MD) simulations of a single methane in water
that is subject to a harmonic confinement potential of
strength K. In fact, we find γ to depend sensitively on K in
the range 102 < K < 104 kJ=ðmol nm2Þ so that γ for larger
K is increased by about 60% compared to the value of γ for
small (or vanishing) K. This dramatic slowing-down of the
methane diffusivity in confinement is mirrored by an
increase of the escape time from the first to the second

hydration shell from τesc1 ≈ 8 ps for small K to τesc1 ≈
18 ps for large K. The intimate coupling of solute and
hydration shell dynamics had been suggested based on
NMR studies that showed a solute to increase the viscosity in
its hydration layer, which in turn slows down the solute
diffusion, an effect that has been called secondary dynamic
solvent effect [8]. Our results demonstrate a direct conse-
quence of this coupling between solute and hydration shell
dynamics: By a detailed analysis of the solute friction
memory function, which we extract from our simulation
trajectories using a novel method, we show that solute
diffusivity and hydration shell kinetics are coupled and both
influenced by the inherent time scale of solute motion, in our
simulation model set by the external potential strength K.
There are various consequences of our findings: In

simulation studies, it is common practice to constrain the
position of a solute in order to determine spatially depen-
dent solvation properties in inhomogeneous systems, for
example, in hydrated lipid bilayer systems [9]. While this
is unproblematic for static properties such as free-energy
profiles, our results show that this procedure potentially
perturbs kinetic properties such as the diffusivity profile. In
fact, there are various alternative techniques that allow us to
extract free-energy and diffusivity profiles from simulation
trajectories of unconstrained solutes [10,11] and which
therefore do not suffer from this potential complication.
The direct experimental test of our predictions is

principally possible with optical traps, which are used to
confine micron-sized plastic or metal beads in water [12].
Recent technological advances allow for the laser trapping
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of gold nanoparticles with a radius as small as 9 nm [13],
which, however, is still much larger than the radius of a
methane molecule employed in our simulations. Anti-
Brownian electrokinetic trapping techniques have been
demonstrated to efficiently trap single molecules with
subnanometer hydrodynamic radii [14], but the achievable
confinement potential strengths are rather weak. The
potential-induced friction enhancement we observe for
methane in water is expected to disappear for large solutes
for which the inertial time scale τm ≡m=γ (wherem denotes
the solute mass) is larger than the longest solvent relaxation
time. Based on time scaling arguments, we argue in Sec. V
that the confinement-potential-induced modification of the
solute friction coefficient should be observable experimen-
tally also for larger solutes, if the solvent relaxation time is
suitably increased by using high-viscosity solvents.
A less direct but nevertheless relevant experimental

consequence concerns the coupling between the dynamics
of molecular probes and the surrounding hydration shell
dynamics, which is studied by various experimental tech-
niques. It is known that the hydration shell dynamics slows
down considerably upon transferring a molecular probe
from bulk water to the surface of a macromolecule, in line
with our results. While in the experimental system the
anchoring of a molecular probe not only confines the
molecular probe but also changes its environment due to
the presence of a linker group and an anchoring scaffold,
it is clear that the confinement-induced mechanism we
demonstrate in this paper contributes also in these more
complex experimental scenarios, as we explain in Sec. V.

II. FRICTION CONSTANT IN
HARMONIC POTENTIAL

For an unconfined solute the diffusion constant and the
friction coefficient follow from the long-time limit of the
mean-square displacement. Obviously, for a solute that is
confined by an external potential this standard protocol is
not applicable. Instead, we have to use a more indirect route
and extract the friction coefficient γ from the symmetric
memory function ΓðtÞ ¼ Γð−tÞ, defined by the generalized
Langevin equation [15,16],

mẍðtÞ¼−
Z

∞

0

dt0Γðt0Þ_xðt− t0Þ−∇U(xðtÞ)þFRðtÞ; ð1Þ

where UðxÞ¼ 1
2
Kx2 is a harmonic potential and the random

force FRðtÞ obeys hFRð0ÞFRðtÞi ¼ kBTΓðtÞ according to
the fluctuation-dissipation theorem. We include the inertial
term proportional to the solute mass m in order to correctly
account for the short-time behavior where the solute
dynamics is ballistic instead of diffusive. In some pub-
lications the upper integration boundary of the memory
term in Eq. (1) is t instead of ∞. The two formulations are
for positive time t > 0 related by a shift of the random force
by ΔFRðtÞ ¼

R∞
0 dt0Γðtþ t0Þ_xð−t0Þ. Our formulation

simplifies the Fourier analysis and does not require us to
specify initial conditions; for a detailed discussion we refer
to Ref. [17]. Our novel method to extract the memory
function ΓðtÞ from simulation trajectories, which can also
be used for experimental trajectories, is based on the
solvent force experienced by the particle,

FsolðtÞ ¼ mẍðtÞ þ∇U(xðtÞ): ð2Þ

The autocorrelation function,

Csol
FFðtÞ ¼ hFsolð0ÞFsolðtÞi; ð3Þ

is after Fourier transformation ~Csol
FFðωÞ ¼

R
∞
−∞ dte−iωt

Csol
FFðtÞ given by

~Csol
FFðωÞ ¼

kBT ~ΓðωÞ
j1 − iω ~ΓþðωÞ=ðmω2 − KÞj2 ; ð4Þ

where we introduce the single-sided memory function
ΓþðtÞ≡ ΓðtÞ for t ≥ 0 and ΓþðtÞ≡ 0 for t < 0 [see the
Supplemental Material (SM) [18] for the full derivation].
Since the friction coefficient γ is given by γ ≡ R

∞
0 dtΓðtÞ,

we see from Eq. (4) that for K ≠ 0,

γ ≡ ~Γð0Þ
2

¼
~Csol
FFð0Þ
2kBT

¼ 1

kBT

Z
∞

0

dtCsol
FFðtÞ: ð5Þ

Note that in the limit K ¼ 0 the integral over the force
autocorrelation function Csol

FFðtÞ vanishes and therefore
cannot be used to extract γ, as amply discussed in the
literature [19,20].

III. SIMULATION SETUP

We perform MD simulations of a single water-solvated
methane modeled as a Lennard-Jones (LJ) particle in a
harmonic potential of strength K; see Fig. 1(a) for a
schematic simulation setup. We use the GROMACS 5.1

[21,22] simulation package. The LJ parameters correspond-
ing to methane are taken from the GROMOS 53A6 [23] force
field, for water we use extended simple point charge (SPC/E)
[24] parameters. We perform NVT simulations at fixed
water number N, fixed volume V and fixed temperature T
with a timestep of 2 fs at a temperature of T ¼ 300 K,
controlled by the velocity rescaling [25] thermostat coupled
with a time constant of 0.5 ps to water only, for three
different cubic box sizes L ¼ 3 nm (894 H2O),
L ¼ 4.5 nm, (3008 H2O) and L ¼ 6 nm (7159 H2O). In
the SM [18] we compare these results to simulations in
the NVE ensemble (fixed water number N, fixed volume V
and constant energy E) and thereby demonstrate that the
ensemble and the thermostat have no significant influence.
We use simulation lengths of roughly 500 ns per parameter
combination. Before the production runs, all systems are
equilibrated for 5 ns in the NPT ensemble (fixed water
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number N, fixed pressure P and fixed temperature T) with
P ¼ 1 bar using a Berendsen [26] barostat to determine the
box size. The solvent force FsolðtÞ acting on the methane is
calculated from the difference of the total force, which is
due to interactions with all water molecules, and the force
generated by the harmonic potential; in the case K ¼ ∞, the
methane is frozen at the potential minimum and the solvent
force equals the total force. Position, velocity, and total
force acting on the methane are saved at every time step.
Fast Fourier transforms are used for the calculation
of autocorrelation functions and integrals over the solvent
force autocorrelation function are computed by trapezoidal
integration.

IV. RESULTS

Typical trajectories of the 1D methane position xðtÞ and
the conjugated total force FðtÞ ¼ mẍðtÞ for two different
values of K are shown in Fig. 1(c). As expected, the
methane oscillates in the confining potential, with fre-
quency and amplitude depending on the force constant K.
In Fig. 1(b), radial distribution functions (RDF) of the
methane-water oxygen separation are depicted for different
K, including the frozen limit K ¼ ∞. All RDFs super-
impose perfectly, reflecting that the equilibrium properties
of the methane hydration shell do not depend on K.
We show simulated solvent force autocorrelation func-

tions Csol
FFðtÞ for different K as colored lines in Fig. 2(a);

mild oscillatory behavior is seen, particularly for inter-
mediate K. Note that position, velocity, and force auto-
correlation functions show more pronounced oscillations,
as discussed in Appendix D. In Fig. 2(b), we show running
integrals over the autocorrelations, defined by

IsolFFðtÞ ¼
Z

t

0

dt0Csol
FFðt0Þ; ð6Þ

as colored lines. According to Eq. (5), IsolFFðt → ∞Þ=
ðkBTÞ ¼ γ, and thus the plateau values observed in

Fig. 2(b) for large t reflect the friction coefficient γ.
Most importantly, we see that the simulation prediction
for γ significantly depends on K, which is somewhat
unexpected, since the hydration structure around meth-
ane is independent of K, as witnessed by the RDF in
Fig. 1(b).
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FIG. 1. Simulation setup. (a) A single methane is solvated in water and confined in an external harmonic potential of strength K.
(b) Radial distribution functions (RDF) of the separation between methane and water oxygens for box size L ¼ 4.5 nm and different K
including the frozen limit K ¼ ∞, all curves perfectly superimpose. The positions of the first two maxima, used to calculate the mean
escape time τesc1, and the positions used to calculate the mean escape time τesc2, are indicated by vertical dashed lines. (c) Methane
position xðtÞ and total force FðtÞ trajectories for two different K values.
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FIG. 2. Simulated solvent force autocorrelations for box size
L ¼ 4.5 nm. (a) Autocorrelation functions Csol

FFðtÞ defined in
Eq. (3) and (b) integrals IsolFFðtÞ defined in Eq. (6) for different
confinement potential strengths K. Colored lines denote simu-
lation results, dotted lines are analytic predictions according to
Eq. (4) using the best-fit memory function ΓðtÞ.
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A. Memory function

To gain insight into this puzzling finding, we extract
the memory function from simulation data. For this we
introduce a variant of existing methods [4,16,27–29] that
gives robust and reliable results for kernels and friction
coefficients over a wide range of confinement potential
strengths. We first observe that in the frozen limit, K ¼ ∞,
Eq. (4) predicts that Csol

FFðtÞ ¼ kBTΓðtÞ; i.e., in this limit,
the solvent force autocorrelation function equals the
memory function. We fit Csol

FFðtÞ in Fig. 2(a) for K ¼ ∞
by a sum of stretched exponentials,

ΓðtÞ ¼
Xn
i¼1

Ai exp

�
−
���� tτi

����
αi
�
; ð7Þ

with n ¼ 2, shown as a black dotted line. To extract ΓðtÞ
also for K ≠ ∞, we calculate Csol

FFðtÞ and IsolFFðtÞ numeri-
cally based on Eqs. (4) and (6) using the functional form
Eq. (7) and extract the parameters by simultaneous fits
(black broken lines) to the simulation data (colored lines) in
Figs. 2(a) and 2(b); the agreement between fits and data
is perfect.
The resultant memory kernels are presented in Fig. 3(a).

They show a fast decay at 50 fs and a long-time tail
extending to about 5 ps. In between, a pronounced and
quite abrupt shoulder at a decay time of about 100 fs is
present for intermediate K values, qualitatively similar to
previous results for the diatomic kernel spectrum in
Lennard-Jones fluids [27]. The fitted decay times τi are
shown in Fig. 3(b); note that for intermediate K values we
use n ¼ 3 stretched exponentials for the fit (see SM [18] for
details on the fit procedure, analysis of the robustness of
the fit results, and a comparison with alternative methods).
The shortest decay time τ1 reflects water-methane repulsive
interactions: from a fit to the short-distance part of the
RDFs in Fig. 1(b) we estimate the fastest relaxation time as
τ1 ¼ 58 fs for K ¼ 0 and τ1 ¼ 85 fs for K ¼ ∞ (see
Appendix A for details), in good agreement with the τ1
data and indicated in Fig. 3(b) by red arrows. The
intermediate K-dependent decay time τ2 agrees quantita-
tively with the harmonic oscillation period τ0 ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
m=K

p
,

shown as a broken line. The longest decay time τ3 is rather
independent of K and similar to the hydrogen-bond break-
age time τHB ≈ 1.4 ps [30]; we thus associate this time with
an intrinsic water relaxation time. We see in Fig. 3(a) that
the memory kernel ΓðtÞ changes with K only in the finite K
range for which τ1 < τ2 ≈ τ0 < τ3, i.e., when the harmonic
oscillation period is between the shortest and longest
memory relaxation times. The friction kernel thus results
from the dynamic interplay of the methane harmonic
oscillations, characterized by the relaxation time τ2 and
governed by the external potential strength K, with the
solvent relaxation modes in the relaxation time window
between τ1 and τ3. Based on this insight we develop a

dynamic scaling argument for the behavior of large solutes
in generic viscous solvents; see Sec. V.
While the fitted exponents α1 and α3 are not too different

from unity and thus can be thought of as representing
single-exponential relaxation modes, the exponent α2 is of
the order of 10, which indicates strongly nonlinear relax-
ation (see SM [18] for details). It is this high value of α2
which leads to the abrupt drop of the memory function
at the time scale τ2 visible in Fig. 3(a). Note that the
hydrodynamic power-law tail predicted from continuum
hydrodynamics [31], recently observed in optical trap
experiments [12] and MD simulations of a supercritical
LJ fluid [32], makes a negligible contribution to ΓðtÞ in the
friction-relevant ps time scale; see SM [18].

B. Friction coefficient

The results for γ, obtained by the integral over the fitted
ΓðtÞ, are presented in Fig. 4 for the three simulation box
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red line. The harmonic oscillation periods τ0 ¼ 2π
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p
are

indicated by vertical lines. (b) Fitted decay times τi (data points)
from Eq. (7) as a function of K. Statistical errors are smaller than
the symbol size. The two time scales for the frozen limit K ¼ ∞
are denoted by horizontal colored lines on the right. The harmonic
oscillation period τ0 ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
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p
is shown as a dashed line, the

relaxation times in the K ¼ 0 and K ¼ ∞ limits estimated from
methane-water repulsive interactions are denoted by red arrows.
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sizes considered and agree nicely with the limiting results
for K ¼ ∞ (obtained from simulations of a completely
frozen methane) and K ¼ 0 (obtained from mean-square
displacements for a freely diffusing methane), as indicated
by colored bars. The deviation of the K ¼ 0 value from the
experimental result γ ¼ 2.2 × 10−12 kg=s [33] reflects that
the SPC/E water viscosity is smaller than the experimental
value. From the close agreement between the data for L ¼
4.5 nm and L ¼ 6.0 nm we conclude that hydrodynamic
finite-size effects [34] are negligible for L≳ 4.5 nm.
Figure 4 demonstrates that γ significantly depends on K
and reaches at strong confinement (K → ∞) a value about
1.6 times the free-diffusion limit (K ¼ 0). These results are
in qualitative agreement with previous simulations that
demonstrated the friction of frozen ions to be larger than
their free-diffusion values [35]. Note, however, that earlier
simulation studies suggested frozen ions to be characterized
by a smaller friction coefficient compared to free ions, a
disagreement that was never discussed or settled [36,37].
Together with our simulation results for a hydrated water
molecule in an external potential, which are shown in
Appendix B and exhibit similar effects as for methane, we
conclude that friction modification in confinement is thus a
general phenomenon that applies to ions, nonpolar as well
as polar uncharged molecules. It transpires that simulations
of frozen or confined molecules cannot be used to estimate
the friction coefficient or the memory function of free
molecules, since—as we show here—the memory function
depends crucially on the precise strength of the confine-
ment potential. The increase of γ with K, at first sight
surprising in light of the decrease of τ2 with K in Fig. 3(b),
is solely caused by the prefactor A3 of the slowest kernel
contribution, as shown in Appendix C. Together with
our interpretation that the slowest time scale τ3 is related
to an intrinsic water relaxation time that reflects the

hydrogen-bond breakage dynamics, this means that the
external confinement potential mostly modifies the hydra-
tion-shell contribution to the total friction.
We include typical values of K for van der Waals

(vdW), hydrogen, ion, and covalent bonds (estimated in
the SM [18]) at the top of Fig. 4, and we see that the
most drastic change of γ occurs in the range
K ≈ ð102–104Þ kJ=ðmol nm2Þ, which matches the strength
of typical noncovalent bonds. We also include in Fig. 4 an
empiric fit,

γ ¼ γ∞ − ðγ∞ − γ0Þ exp½−ðK=K0Þc�; ð8Þ

with the fit parameters γ∞ ¼ 2.67 × 10−12 kg=s,
γ0 ¼ 1.73 × 10−12 kg=s, K0 ¼ 1 234 kJ=ðmol nm2Þ, and
c ¼ 2=3 for the system with L ¼ 4.5 nm. This simple
function will be useful for comparison with other simu-
lations and experimental data. The parameters K0 and c
correspond to the midpoint and the width of the potential
strength range over which the friction changes with K. The
small value of the exponent c ¼ 2=3 reflects a rather broad
range over which γ changes with K. Interestingly, the value
K0 corresponds to a methane mean-square displacementffiffiffiffiffiffiffiffi
Δx2

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=K0

p
≈ 0.05 nm, comparable to the width

of the first hydration shell in Fig. 1(b).

C. Hydration-shell dynamics

As mentioned in Sec. I, based on NMR experiments
[7,8] the friction coefficient of molecular solutes and the
hydration-shell dynamics have been shown to be coupled.
In this section, we explore the influence of an external
potential acting on a solute on the hydration-shell dynamics
and in particular check whether the change of the friction
coefficient withK is paralleled by a change of the hydration
water relaxation dynamics. In Fig. 5(a), we plot the water
escape time τesc1 [38], defined as the mean first passage
time to reach the second hydration shell at water-methane
separation r ¼ 0.65 nm starting from the first hydration
shell at r ¼ 0.37 nm [see Fig. 1(b) for a graphical defi-
nition] as a function of K. The averages are calculated from
typically 50 000 escape events per parameter combination,
from which we estimate the relative error to be less than
1%. τesc1 has the limiting values τesc1 ¼ 8 ps for K ¼ 0 and
τesc1 ¼ 18 ps for K → ∞, showing that the increase of γ
with K in Fig. 4 is paralleled by a slow-down of the escape
dynamics of water molecules from the first hydration shell.
Water mean escape times and water translational relax-

ation times around molecular probes can experimentally be
probed by Overhauser dynamic nuclear polarization tech-
niques [39,40]. Obviously, the increase of τesc1 withK has a
trivial contribution due to the fact that the relative distance
coordinate relevant for the escape dynamics is governed by
the sum of the methane and water translational diffusion
constants [39]. To see this, we neglect for a moment that the
methane position and the methane-water separation are
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dynamically coupled, and approximate the relative diffu-
sion constant by the sum of the bulk translational diffusion
constants Dtrans

rel ¼ Dtrans
CH4

þDtrans
H2O

. In the completely con-
fined case, corresponding to K ¼ ∞, the methane diffusion
constant Dtrans

CH4
is obviously zero and thus Dtrans

rel ¼ Dtrans
H2O

.
Approximating the relative diffusion constant to be inde-
pendent of the methane-water separation (which we
know from simulation studies on the relative motion of
two water molecules not to be entirely true [41]), the
reciprocal relationship between reaction times and diffu-
sion constant, τesc1 ∼ 1=Dtrans

rel , leads to the prediction
τesc1ðK¼∞Þ=τesc1ðK¼0Þ¼ðDtrans

CH4
þDtrans

H2O
Þ=Dtrans

H2O
. From

the simulation values Dtrans
CH4

¼ð2.38�0.01Þ×10−5 cm2=s
(see SM [18]) and Dtrans

H2O
¼ ð2.70� 0.02Þ × 10−5 cm2=s

(calculated from the mean-square displacement of a
single water molecule, taken from a 250-ns-long simulation
of pure water in a L ¼ 4.5 nm box) we thus obtain the
estimate τesc1ðK ¼ ∞Þ=τesc1ðK ¼ 0Þ ¼ 1.88, which is
considerably smaller than the ratio τesc1ðK ¼ ∞Þ=
τesc1ðK ¼ 0Þ ¼ 18 ps=8 ps ¼ 2.25 extracted from the sim-
ulation data in Fig. 5(a). Is the deviation of the simulated

escape time ratio in Fig. 5(a) from the simple estimate
associated with a change of the hydration water viscosity
(and thus a change ofDtrans

H2O
) in the first hydration shell with

rising confinement potential strength K?
To look into this, in Fig. 5(b) we show the mean escape

time τesc2 for water molecules starting from the first
hydration shell at r ¼ 0.37 nm and reaching the much
higher distance r ¼ 1.37 nm, for which we obtain values
from τesc2 ¼ 60 ps forK ¼ 0 to τesc2 ¼ 110 ps forK → ∞.
The mean escape times are higher by about an order of
magnitude compared to the results for τesc1 in Fig. 5(a)
and the change of τesc2 with K is shifted to considerably
lower values of K. The ratio of escape times from the
completely immobilized and the free methane is now
τesc2ðK ¼ ∞Þ=τesc2ðK ¼ 0Þ ¼ 1.83 and thus considerably
smaller than the ratio obtained in the first hydration shell
and quite close to our estimate based on the bulk diffusion
constants ðDtrans

CH4
þDtrans

H2O
Þ=Dtrans

H2O
¼ 1.88, as expected: The

methane confinement does not seem to significantly influ-
ence the water dynamics beyond the first solvation shell.
We conclude that while the main contribution to the
translational slow-down of water in the first hydration
shell around a methane with rising K comes from the trivial
shift of the relative diffusion constant, a significant con-
tribution to this slow-down comes from the modification of
the water viscosity in the first hydration shell that accom-
panies the increase of the methane friction coefficient with
rising K. This relates well with our finding that the change
of γ with increasing K is predominantly caused by a
variation of the long-time contribution to the memory
function, as shown in Appendix C, which in turn is related
to the intrinsic water dynamics.
The influence of the confinement potential on the

hydration-shell dynamics is more directly reflected by
the water orientational dynamics around methane, since
here we do not need to consider a relative coordinate. In
Fig. 6(a), we show the orientation correlation function.

CrotðtÞ ¼ hP2(uð0Þ · uðtÞ)i; ð9Þ

of water molecules with an initial separation below 0.4 nm
around a free and a frozen methane molecule. Following
previous studies [42], uðtÞ denotes the normalized
vector along each OH bond of a water molecule and
P2ðxÞ ¼ ð3x2 − 1Þ=2 is the second Legendre polynomial.
We include exponential fits CrotðtÞ∝ expð−t=τrotCH4

Þ for
t>2 ps as dashed lines. The orientational relaxation times
are τrotCH4

ðK ¼ 0Þ ¼ 3.1 ps and τrotCH4
ðK ¼ ∞Þ ¼ 3.6 ps for

free and frozen methane and thus differ by a factor
of τrotCH4

ðK ¼ ∞Þ=τrotCH4
ðK ¼ 0Þ ¼ 1.16. The orientational

relaxation time is inversely related to the rotational dif-
fusion constant, τrotCH4

∼ 1=Drot, in the overdamped limit.
We thus conclude that the rotational diffusion of water in
the first solvation shell around a methane molecule slows

 6

 8

 10

 12

 14

 16

 18

 20

100 101 102 103 104 105 106

(a)
τ e

sc
1 

[p
s]

K [kJ/(mol nm2)]

 50

 60

 70

 80

 90

 100

 110

 120

100 101 102 103 104 105 106

(b)

τ e
sc

2 
[p

s]

K [kJ/(mol nm2)]

FIG. 5. Mean escape times of water from the first hydration
shell around methane. (a) Results for τesc1, defined as the mean
first passage time from r ¼ 0.37 nm to a target distance of
r ¼ 0.65 nm [indicated by dashed vertical lines in the RDF in
Fig. 1(b)], are shown as a function of K. Results in the limits
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mean escape time τesc2 from r ¼ 0.37 nm to a target distance of
r ¼ 1.37 nm as a function of K.
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down considerably as the translational methane motion
is progressively inhibited by the increasing confinement
potential.
In Fig. 6(b), we show orientation correlation functions

of water molecules in the first hydration shell around a
free and a frozen water molecule (note that in the frozen
case both position and orientation of the central water
molecule are fixed). The fitted relaxation times are
τrotH2O

ðK ¼ 0Þ ¼ 2.5 ps (in agreement with literature values
[42]) and τrotH2O

ðK ¼ ∞Þ ¼ 3.8 ps and thus differ by a factor
τrotH2O

ðK ¼ ∞Þ=τrotH2O
ðK ¼ 0Þ ¼ 1.5. Not surprisingly, due to

the formation of directional hydrogen bonds, a frozen water
molecule slows down the orientational hydration water
dynamics much more than a frozen methane molecule.

V. DISCUSSION AND CONCLUSION

In conclusion, the friction coefficient γ of a methane
molecule is shown to significantly depend on the confine-
ment potential strength K, which constitutes a generic
and unexpected modification of Stokes’s law γ ¼ 6πηR.
This reflects, on the one hand, that friction coefficients
of fixed solutes differ from free solutes, as suggested

previously [43]; on the other hand, it means that free-
solution friction coefficients and memory functions cannot
be obtained from confined or frozen simulations, contrary
to common practice. More generally, our results demon-
strate that friction and diffusion on the molecular scale
result from the intricate dynamic coupling of solute and
hydration degrees of freedom.
Interestingly, the maximal variation of the friction

coefficient γ with K we find is similar to the change in
γ of a sphere as one goes from a slip (characterized by
γ ¼ 4πηR) to a stick situation (in which case one recovers
the standard result γ ¼ 6πηR). Clearly, the similarity of this
variation of γ to our results is purely coincidental.
For more complicated potentials involving multiple

local minima and barriers, for example, for proteins in a
suitably defined folding landscape, we speculate that in
analogy to our results obtained for methane in a harmonic
potential, a local free-energy minimum would produce a
local increase in the conjugate friction landscape and,
conversely, a free-energy barrier would tend to reduce
the local friction. Indeed, this might explain certain
universal features seen in diffusivity landscapes extracted
from water-explicit simulation trajectories of simple pro-
teins [10]. Along the same lines, the diffusivity profile of a
water molecule as a function of the distance from a planar
wall indicates a reduced diffusion at local minima of the
free-energy profile [44].
The limit of an infinitely strong confinement potential

K → ∞ is equivalent to a solute with an infinite mass
m → ∞, which directly follows from the fact that the solute
is at rest in both cases. By analogy with our results for the
friction coefficient γ in Fig. 4, where a continuous increase
with rising K is observed, we would expect that γ also goes
up continuously as m increases. This is indeed confirmed
by experimental measurements of the diffusion coefficient
of different isotopes of molecules (such as 13CO2=12CO2)
and atoms (such as 3He=4He) in water [45].
The methane molecule in our simulations is represented

as a simple Lennard-Jones sphere, so the friction increase
and the hydration-shell dynamics slow-down with rising K
presumably is a rather universal effect that should hold
for other molecular solutes as well. Indeed, the effect has
been seen for ions in previous simulations [35–37] and in
Appendix B is demonstrated for a hydrated water molecule
in an external potential, which serves as a simple model for
a confined polar molecule.
Our simulation setup closely resembles optical trap

experiments, where particles that are dispersed in aqueous
solution are confined in laser-light-induced harmonic
potentials [12]. The lower size limit of the trapped particles
has reached the 10 nm scale [13], which is still substantially
larger than the size of a methane molecule used in our
simulations. Anti-Brownian electrokinetic trapping tech-
niques allow us to trap nanometer-sized molecules [14], but
the confinement potential strengths are rather weak. So the
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legitimate question is whether the effects we predict survive
for larger particles, for which a time scale discussion is
needed.
The time scale above which a particle in a viscous

solvent starts to feel frictional effects is on the scaling level
given by the inertial time scale τm ≡m=γ (wherem denotes
the solute mass), at which the particle behavior crosses over
from ballistic to diffusive [46]. Using the particle density ρ,
particle radius R, and the Stokes friction γ ¼ 6πηR, we
obtain τm ∼ ρR2=η, from which we see that the inertial time
scale increases strongly with particle radius R. An external
harmonic potential of large strength K gives rise to an
oscillation time τ0 ≃ 2π

ffiffiffiffiffiffiffiffiffiffi
m=K

p
; for small K, in the over-

damped regime, the time scale is rather τγ ≃ 2πγ=K.
The crossover between the oscillatory inertial and the
overdamped regimes occurs at a critical potential strength
K� ≃ γ2=m ∼ η2=ρR, where one has τ0 ∼ τγ ∼ τm. Using
the notation we introduced when discussing our simulation
results, we assume that the memory function is charac-
terized by the longest and shortest relaxation times τ3 and
τ1, respectively; in between these times there could in
principle be a whole spectrum of intermediate relaxation
modes. For water-solvated methane, we have argued that τ3
is an intrinsic relaxation time of the solvent and thus
independent of solute properties (in principle, τ3 could
also depend on internal solute relaxation modes for more
complex, large solutes, which however does not change
our argumentation and thus is not explicitly considered).
The time scale τ1 stems from the fast relaxation of solute-
solvent interactions, i.e., the Lennard-Jones repulsion.
Besides a trivial dependence via the relative mass of a
solute-water pair (see Appendix A for details), also τ1 will
be rather insensitive to the solute size. In Fig. 7(a), we show
the potential time scales τ0 and τγ as a function of K for a
large particle, for which the inertial time scale τm is larger
than the longest solvent relaxation time τ3. In this case the
particle oscillates in an inertial, frictionless fashion over the
entire solvent relaxation time range τ1 < t < τ3 and we do
not expect any dynamic coupling between the particle and

the solvent for any value of K; in other words, an external
potential does not influence the particle friction and all the
effects we discuss in this paper are absent.
In Fig. 7(b), we show the opposite situation where the

inertial time scale τm is smaller than the longest solvent
relaxation time τ3. In the example shown in Fig. 7(b), the
particle dynamics changes from inertial to diffusivewithin the
solvent relaxation time range and in this case we do expect
the particle friction γ to depend on the potential strength K.
This is the situation we encountered in our simulations of
methane inwater and for which thememory kernel relaxation
times are depicted in Fig. 3(b). Note thatwe draw the potential
time scale in Fig. 7(b) in the time range τm < t < τ3 as a
dotted line, since it is not clear whether in this time range it
follows the oscillatory or the overdamped prediction; in
fact, the simulation results in Fig. 3(b) seem to follow the
oscillatory prediction τ0 ≃ 2π

ffiffiffiffiffiffiffiffiffiffi
m=K

p
in the entire range

τ1 < t < τ3. To put in explicit numbers, with the methane
mass mCH4

¼ 16u ¼ 2.7 × 10−26 kg and the methane dif-
fusion constant Dtrans

CH4
¼ 2.38 × 10−5 cm2=s, we obtain for

the inertial time scale τm ¼ mCH4
Dtrans

CH4
=kBT ¼ 15 fs, which

is even smaller than the fastest water relaxation time τ1 ¼
58 fs for K ¼ 0 or τ1 ¼ 85 fs for K ¼ ∞.
It transpires that the coupling scenario depicted in

Fig. 7(b) can also for a large particle be obtained if the
longest solvent relaxation time τ3 is increased accordingly.
This can be achieved by the use of highly viscous solvents,
such as glycerol or polymer solutions. For entangled
polymer solutions, the longest relaxation time scales as a
power law with the polymer length and can thus be
increased straightforwardly [47]. In essence, in order to
be able to observe the K-dependent friction effects we
describe in this paper also with large particles, which can be
easily confined in optical traps, one has to sufficiently
increase the solvent viscosity which will lift the upper
solvent relaxation time τ3 and at the same time bring down
the inertial time scale τm ≡m=γ.
A fundamentally different experimental consequence of

our results concerns the hydration-shell dynamics around

(a) (b)

FIG. 7. Dynamic scaling diagrams for (a) a large solute particle and for (b) a small particle. In (a) the inertial time scale τm lies above
the longest water relaxation time τ3 and the particle relaxation time in the potential (shown as a solid line) changes from the harmonic
oscillator prediction τ0 ≃ 2π

ffiffiffiffiffiffiffiffiffiffi
m=K

p
(for K > K�) to the overdamped prediction τγ ≃ 2πγ=K (for K < K�) above τ3. In (b) τm is smaller

than τ3 and the potential relaxation time becomes overdamped within the relaxation time range. In this case we expect the external
potential of strength K to modify the particle friction.
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probe molecules, which is measured by a number of
different experimental methods such as combined 2H-17O
nuclear relaxation [7,8], nuclear Overhauser effect [48],
dynamic Stokes shift [49], Overhauser dynamic nuclear
polarization [39], fluorescence [50], 2D infrared spectros-
copy [51], quasielastic neutron scattering [52], and THz
absorption [53,54]. The water hydration dynamics around
methane slows down significantly above potential strength
values that correspond to covalent bonds, this is seen for
the translational water motion in Fig. 5, although here the
trivial shift of the effective relative diffusivity contributes
(as discussed in Sec. IV C), as well as for the orientational
water dynamics in Fig. 6. These results thus suggest that
hydration water relaxation times not only depend on the
type of probe molecule, i.e., polar versus nonpolar [55], but
also on how tightly the probe molecule is confined or
bound to a macromolecule.
The translational diffusion of hydration water relative to

probes attached to proteins or lipid assemblies is exper-
imentally observed to be about 3.5–5 times slower than
around probes that freely diffuse in bulk water [39,52,56],
for probes attached to DNA segments a slow-down by only
a factor of about 2 was reported [40], which seems to be the
lower bound for this type of measurements. A similar slow-
down of the orientational correlation time of hydration
water at the protein water interface by a factor of about 2
compared to bulk was reported based on experiments [57]
and simulations [42]. Clearly, when a probe molecule is
anchored at a larger molecule, not only is its motion
confined by an effective potential whose stiffness depends
on the elasticity of the anchoring group, also the environ-
ment around the probe molecule is modified due to the
presence of the linker groups and the scaffold to which the
probe is attached, which for typical systems has been
shown to be the main factor determining the hydration
water dynamics around the probe [42,58,59]. Nevertheless,
we argue that the confinement-induced friction modifica-
tion we demonstrate in this paper will certainly contribute
to the water hydration slow-down—among other factors—
and thus is a noteworthy mechanism.
In fact, in two experiments the flexibility of the scaffold

onto which a probe molecule was anchored was varied
without a drastic change in the environment of the probe. In
a site-specific femtosecond-resolved fluorescence study
using 16 tryptophan labeled myoglobin mutants, the water
relaxation time was shown to be correlated with the local
protein structural rigidity [50]. Based on THz absorption
studies, the hydration-shell relaxation dynamics was argued
to become faster with increasing protein flexibility; in these
experiments, the protein flexibility was modified by suit-
ably chosen mutations [53]. The range over which a protein
perturbs the hydration-shell dynamics according to the
analysis of THz experiments extends to several hydration
layers, whereas in our analysis of translational water
motion we only see an effect of the confining potential

in the first hydration layer. Nevertheless, we conclude that
these two experimental studies suggest that water hydration
dynamics is coupled to the local rigidity of the probe
molecule, even when the probe molecule is attached to a
large protein. This is fully confirmed by simulations that
show a significant slow-down of hydration shell dynamics
around a frozen protein compared to a flexible protein of
the same structure [60].
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APPENDIX A: ESTIMATE OF THE
CONTRIBUTION OF THE REPULSIVE

INTERACTION BETWEEN METHANE AND
WATER TO THE MEMORY KERNEL

Here we show that repulsive methane-water interactions
give rise to a relaxation time that matches the shortest
memory time scale τ1. The force autocorrelation function of
an undamped harmonic oscillator is

hFð0ÞFðtÞi ∝ cos ðωreltÞ; ðA1Þ

where the characteristic frequency is

ωrel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Krel=mrel

p
; ðA2Þ

and

mrel ¼
mH2OmCH4

mH2O þmCH4

ðA3Þ

denotes the relative mass of the molecule pair. We deter-
mine the force constant Krel from the free energy F ðrÞ as a
function of the methane-water distance r, shown by a black
line in Fig. 8, which is obtained from the radial distribution
function gðrÞ shown in Fig. 1(b) via

F ðrÞ ¼ −kBT log gðrÞ: ðA4Þ

Note that F ðrÞ is very anharmonic even on energy scales of
the order of the thermal energy kBT, so a harmonic fit to the
entire functionF ðrÞ is not useful. To extract the fastest time
scale of particle motion in this free-energy profile, we fit a
harmonic potential,

UðrÞ ¼ 1

2
Krelðr − r0Þ2; ðA5Þ

to the repulsive part in the range 0.32 < r < 0.36 nm only,
which is denoted by the red line in Fig. 8. The result is
Krel ¼ 3; 548 kJ=ðmol nm2Þ. To obtain the fastest time
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scale τ1 of the memory kernel defined in Eq. (7), we
demand that the stretched exponential function in Eq. (7)
and the oscillatory function in Eq. (A1) have both decayed
to 1=e, which is equivalent to

cos ðωrelτ1Þ ¼
1

e
; ðA6Þ

from which we obtain with our estimate for Krel and mrel
given by Eq. (A3) the time scale

τ1 ¼
1

ωrel
cos−1ðe−1Þ ¼ 58 fs; ðA7Þ

which holds for unconfined methane. If the methane
molecule is frozen, which corresponds to mCH4

→ ∞, we
use mrel ¼ mH2O and obtain

τ1 ¼ 85 fs: ðA8Þ
These times are included in Fig. 3(b) as red arrows and
match the simulated times quite nicely.
For comparison, if we repeat the analysis but use instead

of the fit to the repulsive part of the free energy a harmonic
fit around the minimum of the free energyF ðrÞ, denoted by
the blue line in Fig. 8, we obtain the time scales τ1 ¼ 119 fs
for free methane and τ1 ¼ 174 fs for frozen methane.
These time scales are significantly larger than the fastest
time scale of the memory function. We conclude that the
fast initial decay of the memory function is indeed caused
by repulsive interactions between the solute and the solvent
molecules.

APPENDIX B: CONFINEMENT-DEPENDENT
FRICTION FOR A HYDRATED

WATER MOLECULE

To demonstrate that the confinement dependence of the
friction coefficient is not limited to hydrophobic solutes, we
simulate a confined SPC/E [24] water molecule solvated in
a cubic SPC/E water box with L ¼ 4.5 nm for 250 ns for

each K. We present in Fig. 9 the solvent force autocorre-
lation functions Csol

FFðtÞ and the running integrals IsolFFðtÞ
of the confined water molecule for different potential
strengths K between 25 and 250 000 kJ=ðmol nm2Þ. As
shown in Sec. II, the height of the plateau of IsolFFðtÞ
corresponds to the friction constant; i.e.,

γ ¼ 1

kBT
lim
t→∞

IsolFFðtÞ: ðB1Þ

We conclude from the K dependence of the heights of the
plateaus of IsolFFðtÞ shown in Fig. 9(b) that also the friction
coefficient of water increases significantly with rising
confinement potential strength.

APPENDIX C: DECOMPOSITION OF THE
FRICTION COEFFICIENT

Here, we decompose the methane friction coefficient into
contributions from different terms in the memory kernel
according to γ ¼ P

iγi with the definition

γi ¼ Ai

Z
∞

0

dt exp

�
−
���� tτi

����
αi
�
; ðC1Þ
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where Ai, αi, and τi are the parameters of the memory
kernels defined in Eq. (7). The contributions γi are shown
as a function of K for the system with L ¼ 4.5 nm in
Fig. 10 together with the total friction γ and the sum of the
short-time contributions γ1 þ γ2. The results demonstrate
that the total friction coefficient is dominated by the long-
time contribution γ3, whereas the sum of the short-time
contributions γ1 þ γ2 is constant. Since the time scale τ3 is
rather constant as a function of K, as shown in Fig. 3(b), we
conclude that the change of γ with K is solely due to an
increase of the amplitude A3 with increasing K.

APPENDIX D: CORRELATION FUNCTIONS
AND ALTERNATIVE METHODS

1. Correlation functions for methane

In Fig. 11, the (normalized) autocorrelation functions
CFFðtÞ ¼ hFð0ÞFðtÞi, C_x _xðtÞ ¼ h_xð0Þ_xðtÞi, and CxxðtÞ ¼
hxð0ÞxðtÞi are presented for the medium system size
(L ¼ 4.5 nm) and five different harmonic spring constants

K. We observe that with larger spring constant all functions
are subject to pronounced oscillatory behavior with a
frequency close to ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
K=m

p
. The amplitude of these

oscillations decays on time scales between 0.5 and 5 ps,
force and velocity autocorrelation functions with small
spring constants decay the fastest. Note that these oscil-
lations are much more pronounced than the oscillations in
Csol
FFðtÞ presented in Fig. 2(a).

2. Analytic expressions for correlation functions

Here, we give analytic expressions for the correlation
functions CxxðtÞ ¼ hxð0ÞxðtÞi, C_x _xðtÞ ¼ h_xð0Þ_xðtÞi, and
CFFðtÞ ¼ hFð0ÞFðtÞi, which can be derived analogously
to Eq. (4) from the generalized Langevin equation Eq. (1):

~CxxðωÞ ¼
kBT ~ΓðωÞ

jmω2 − K − iω ~ΓþðωÞj2
; ðD1Þ

~C_x _xðωÞ ¼
ω2kBT ~ΓðωÞ

jmω2 − K − iω ~ΓþðωÞj2
; ðD2Þ

~CFFðωÞ ¼
m2ω4kBT ~ΓðωÞ

jmω2 − K − iω ~ΓþðωÞj2
: ðD3Þ

As we have ~C_x _xð0Þ ¼ 0 and ~CFFð0Þ ¼ 0 forK ≠ 0, clearly,
the integrals of these two correlation functions will not be
suited to extract the friction constant. Only the position
autocorrelation function is nonzero at zero frequency, i.e.,
~Cxxð0Þ ¼ kBT ~Γð0Þ=K2 ¼ 2kBTγ=K2 for K ≠ 0, and thus
in principle allows us to extract the friction coefficient. We
remark that for vanishing confinement K ¼ 0, the velocity
autocorrelation fulfills

~C_x _xð0Þ ¼
kBT ~Γð0Þ
j ~Γþð0Þj2

¼ 2kBT
γ

; ðD4Þ
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and thus allows us to extract γ. Note, however, that all given
correlation functions are subject to large amplitude oscil-
lations for sufficiently high values of K, which limits the
practical usefulness, as is demonstrated in Fig. 11.

3. Comparison to an extraction method based on the
position autocorrelation function

Hummer et al. developed a method to calculate the
friction coefficient from the position autocorrelation func-
tion in systems with a biasing potential [61]. Starting from
the work of Woolf and Roux [62], they showed that the
diffusion coefficient D of a particle in a harmonic potential
UðxÞ ¼ Kx2=2 can be written as

D ¼ hx2i2R∞
0 dthxð0ÞxðtÞi ; ðD5Þ

or, in terms of the friction coefficient,

γ ¼ K2

kBT

Z
∞

0

dthxð0ÞxðtÞi: ðD6Þ

We note that this result can be directly derived from
Eq. (D1) according to

Z
∞

0

dtCxxðtÞ ¼
1

2
~Cxxð0Þ ¼

kBTγ
K2

; ðD7Þ

which is equivalent to Eq. (D6).
We compare the (normalized) position autocorrelation

function CxxðtÞ ¼ hxð0ÞxðtÞi with the (normalized) solvent
force autocorrelation function Csol

FFðtÞ ¼ hFsolð0ÞFsolðtÞi in
Fig. 12. We conclude that for sufficiently small values ofK,
the two methods should work equally fine. However, as
already pointed out in Ref. [61], the position autocorrela-
tion function is dominated by oscillations, which render the
integration numerically unstable for large values of K. Our
method that is based on Csol

FFðtÞ is suitable to extract the

friction coefficient and the memory kernel for all values of
the confinement strength K.

4. Parametrization-free methods to extract
the memory kernels

In principle, the memory functions can be extracted
numerically in a parametrization-free way from correlation
functions in the time domain [3,16,17]. Because of the
instability of the inversion scheme [3], this approach is in
practice quite unstable for systems with high values of K,
which are subject to fast oscillatory behavior in the relevant
correlation functions (see Fig. 11). We remark that the
parametrization of the memory kernel as it is used in this
work can be regarded as a regularization of the problem [3].
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