7,455 research outputs found
Interagency telemetry arraying for Voyager-Neptune encounter
The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented
A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates
Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be
common in galactic nuclei, as a result of frequent galaxy mergers.
Hydrodynamical simulations of circumbinary discs predict strong periodic
modulation of the mass accretion rate on time-scales comparable to the orbital
period of the binary. As a result, SMBHBs may be recognized by the periodic
modulation of their brightness. We conducted a statistical search for periodic
variability in a sample of 35,383 spectroscopically confirmed quasars in the
photometric database of the Palomar Transient Factory (PTF). We analysed
Lomb-Scargle periodograms and assessed the significance of our findings by
modeling each individual quasar's variability as a damped random walk (DRW). We
identified 50 quasars with significant periodicity beyond the DRW model,
typically with short periods of a few hundred days. We find 33 of these to
remain significant after a re-analysis of their periodograms including
additional optical data from the intermediate-PTF and the Catalina Real-Time
Transient Survey (CRTS). Assuming that the observed periods correspond to the
redshifted orbital periods of SMBHBs, we conclude that our findings are
consistent with a population of unequal-mass SMBHBs, with a typical mass ratio
as low as q = M2/M1 ~ 0.01.Comment: MNRAS (accepted), new section 4.
Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
We report dynamical shear-modulus measurements for five glass-forming liquids
(pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate,
1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained
by the piezoelectric shear-modulus gauge (PSG) method. This technique allows
one to measure the shear modulus ( Pa) of the liquid within a
frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent
response functions to investigate whether time-temperature superposition (TTS)
is obeyed. We also study the shear-modulus loss-peak position and its
high-frequency part. It has been suggested that when TTS applies, the
high-frequency side of the imaginary part of the dielectric response decreases
like a power law of the frequency with an exponent -1/2. This conjecture is
analyzed on the basis of the shear mechanical data. We find that TTS is obeyed
for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the
remaining liquids evidence of a mechanical process is found. Although
the the high-frequency power law behavior of the shear-loss
may approach a limiting value of when lowering the temperature, we
find that the exponent lies systematically above this value (around 0.4). For
the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and
1,2-propanediol) we also test the shoving model prediction, according to which
the the relaxation-time activation energy is proportional to the instantaneous
shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure
Conservação a médio-longo prazo de sementes de Piper aduncum e Piper hispidinervum em temperaturas subzero e criogênica.
Stellar Double Coronagraph: a multistage coronagraphic platform at Palomar observatory
We present a new instrument, the "Stellar Double Coronagraph" (SDC), a
flexible coronagraphic platform. Designed for Palomar Observatory's 200" Hale
telescope, its two focal and pupil planes allow for a number of different
observing configurations, including multiple vortex coronagraphs in series for
improved contrast at small angles. We describe the motivation, design,
observing modes, wavefront control approaches, data reduction pipeline, and
early science results. We also discuss future directions for the instrument.Comment: 25 pages, 12 figures. Correspondence welcome. The published work is
open access and differs trivially from the version posted here. The published
version may be found at
http://iopscience.iop.org/article/10.1088/1538-3873/128/965/075003/met
Electroweak Hadronic Contributions to the muon g-2
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2
that may be enhanced by large logarithms. The present evaluation is improved
over those already existing in the literature by the implementation of the
current algebra Ward identities and the inclusion of the correct short-distance
QCD behaviour of the relevant hadronic Green's function.Comment: 29 pages, 6 figures, LaTeX. Typos fixe
Electric-Field Gradient at Cd Impurities in In2o3. A FLAPW Study
We report an ab initio study of the electric-field gradient tensor (EFG) at
Cd impurities located at both inequivalent cationic sites in the semiconductor
In2O3. Calculations were performed with the FLAPW method, that allows us to
treat the electronic structure of the doped system and the atomic relaxations
introduced by the impurities in the host lattice in a fully self-consistent
way. From our results for the EFG (in excellent agreement with the
experiments), it is clear that the problem of the EFG at impurities in In2O3
cannot be described by the point-charge model and antishielding factors.Comment: 4 pages, 2 figures, and 2 table
Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota
An array of seismometers is being developed at the Sanford Underground
Laboratory, the former Homestake mine, in South Dakota to study the properties
of underground seismic fields and Newtonian noise, and to investigate the
possible advantages of constructing a third-generation gravitational-wave
detector underground. Seismic data were analyzed to characterize seismic noise
and disturbances. External databases were used to identify sources of seismic
waves: ocean-wave data to identify sources of oceanic microseisms, and surface
wind-speed data to investigate correlations with seismic motion as a function
of depth. In addition, sources of events contributing to the spectrum at higher
frequencies are characterized by studying the variation of event rates over the
course of a day. Long-term observations of spectral variations provide further
insight into the nature of seismic sources. Seismic spectra at three different
depths are compared, establishing the 4100-ft level as a world-class low
seismic-noise environment.Comment: 29 pages, 16 figure
- …
