17 research outputs found

    CRISPR Systems for COVID-19 Diagnosis

    Get PDF
    The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RTqPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPRbased diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system

    Current Approaches To Waste Polymer Utilization And Minimization: A Review

    No full text
    Scheme The mass production of polymer products, in particular plastics, and their widespread use depending on the inherent advantages they have, make these materials ironically a threat to life on Earth. Polymer recycling is being considered as one of the most widely accepted remedies to the threat of growing amounts of plastic waste by both the public and scientists. In practice, recycling is associated with many difficulties, such as problems related to separation, sorting and cleaning operations, lack of fiscal subsidies, instability of selective garbage separation programs, high transport and electricity costs, etc. Still, a large section of society and the authorities agree on the necessity and importance of recycling to protect the environment, and natural habitats and resources for future generations in a balanced manner to conserve raw materials, and to reduce energy consumption, municipal solid waste production and greenhouse gas emission. The recycling effort is almost endless in itself and includes a variety of approaches such as refurbishing, mechanically reshaping, chemically treating, thermally utilizing, etc. Some novel approaches such as application in carbon capture or synthesis of carbon nanostructures from the plastic waste are among the new process technologies of recycling. From traditional and promising polymer waste utilization approaches, this review will highlight sustainable methods to reduce impacts of plastic waste on the environment. (c) 2018 Society of Chemical IndustryWoSScopu

    FABRICATION OF THE AG/DMAEMA@PET COMPOSITES FOR EFFICIENCY REMOVAL OF AS(III) IONS

    No full text
    Reversible addition-fragmentation chain transfer (RAFT) polymerization is considered as the most promising synthetic route to prepare well-controlled structures with enhanced performance in specialized applications. Polymers synthesized by controlled free-radical polymerization (CRP) techniques process well-defined molecular architectures and are used in many applications such as drug-delivery, special sensing materials, molecular imprinting, polymer-protein conjugates, development of cylindrical, spherical, hyper-branched polymers, pH or temperature responding smart polymers, etc

    Synthesis of Fe3O4-Gold hybrid nanoparticles coated by bovine serum albumin as a contrast agent in MR imaging

    No full text
    Despite the over spatial separation and the ability to determine soft tissues, insufficient contrast is the shortcoming of magnetic resonance imaging (MRI) that could be circumvented by the use of contrast agents. The use of MRI contrast agents are widely applied to enhance the vision of internal body structures. Nano-sized contrast materials have unique application advantages compared to other contrast agents due to their size and shape. However, for contrast agents such as bare iron (II, III) oxide (Fe3O4) magnetic nanoparticles (NPs), aggregation and accumulation are the main shortcomings. Thus, surface modifications are necessary for their use in biopharmaceutical applications. Gold, Au, nanoparticles are of big interesting for use in biomedical purposes due to their chemical stability and oxidation resistance. In this study, we synthesized magnetic Fe3O4–Au hybrid NPs with a facile method and coated them with bovine serum albumin (BSA) to increase their chemical stability and biocompatibility. Afterwards, the hybrid nanosystem was characterized by some methods, and their potential to increase MRI contrast was investigated by the phantom MRI experiments. Our data showed that the signal intensity on MR images was significantly reduced, thus confirming the contrast ability of the formulated Fe3O4–Au-BSA NPs

    Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization

    No full text
    Reversible addition - fragmentation chain transfer (RAFT) polymerization was applied to radiation-induced graft polymerization of styrene from cellulose. The grafting of styrene from cellulose substrates using the chain transfer agent cumyl phenyldithioacetate was confirmed by Raman and X-ray photoelectron spectroscopy, differential scanning calorimetery, thermogravimetric analysis, scanning electron microscopy, and contact angle analysis. Grafted polystyrene chains were cleaved from the cellulose surface by acidic hydrolysis of the cellulose. The number-average molecular weight and polydispersity index of the grafted and the free (nongrafted) polystyrenes obtained under identical conditions were determined by size exclusion chromatography. Grafted and nongrafted polystyrenes have almost the same (near theoretical) molecular weight and narrow polydispersity, thus proving for the first time the control of the grafting process mediated via RAFT without any prior functionalization of the surface

    Nanopore size tuning of polymeric membranes using the RAFT-mediated radical polymerization

    No full text
    International audiencePoly(acrylic acid) (PAA) was grafted into the nanochannel walls of track-etched β-PVDF membranes in a controlled manner by RAFT polymerization. PAA-g-PVDF copolymers with various degrees of grafting from 5% to 63% were characterized by ATR-FTIR, X-ray photoelectron spectroscopy and atomic force microscopy (AFM). The controlled fashion of RAFT mediated grafting was demonstrated by size exclusion chromatography (SEC) and AFM. It was observed that the pore diameter decreases steadily with the degree of grafting (DOG) and pores start to be filled by the grafted PAA beyond 40wt 40 wt% DOG, based on AFM measurements and 15 wt% DOG, based on electrochemical analysis. The synthesized nanoporous membranes were later transformed into highly sensitive functionalized membrane electrodes (FMEs) by deposition of a thin gold ($ 50 nm) layer onto the membrane surfaces without blocking the nanochan-nels. The synthesized FMEs have been found to be sensitive to sub-ppb concentrations of Pb 2+ in square-wave anodic stripping voltammetry (SW-ASV) measurements. The sensitivities of RAFT mediated FMEs compared to those synthesized by conventional free-radical polymerization were found to be almost three times higher at sub-ppb concentrations of Pb 2+ in SW-ASV analysis.

    Serratula coronata L. Mediated Synthesis of ZnO Nanoparticles and Their Application for the Removal of Alizarin Yellow R by Photocatalytic Degradation and Adsorption

    No full text
    In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method using the plant extract of Serratula coronata L. as a reducing and stabilizing agent and characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. Photocatalytic degradation of AY was monitored by UV–visible spectroscopy and the effects of parameters, such as light source type (UV-, visible- and sunlight), incubation time, pH, catalyst dosage and temperature on degradation were investigated. It was demonstrated that the source of light plays an important role in the efficiency of the reaction and the UV-assisted degradation of AY was the most effective, compared to the others. The degradation reaction of AY was found to follow the Langmuir-Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of AY accelerated with increasing temperature, and the lowest activation energy (Ea) was calculated as 3.4 kJ/mol for the UV-light irradiation system, while the Ea values were 4.18 and 7.37 kJ/mol for visible light and sunlight, respectively. The dye removal by the adsorption process was also affected by several parameters, such as pH, sorbent amount and contact time. The data obtained in the kinetics study fit the pseudo-second-order equation best model and the rate constant was calculated as 0.001 g/mg·min. The isotherm analysis indicated that the equilibrium data fit well with the Freundlich isotherm model. The maximum adsorption capacity of AY on biogenic ZnO NPs was 5.34 mg/g

    Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes

    No full text
    This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption

    Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes

    No full text
    This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption
    corecore