9,034 research outputs found
Models for the 3-D axisymmetric gravitational potential of the Milky Way Galaxy - A detailed modelling of the Galactic disk
Aims. Galaxy mass models based on simple and analytical functions for the
density and potential pairs have been widely proposed in the literature. Disk
models constrained by kinematic data alone give information on the global disk
structure only very near the Galactic plane. We attempt to circumvent this
issue by constructing disk mass models whose three-dimensional structures are
constrained by a recent Galactic star counts model in the near-infrared and
also by observations of the hydrogen distribution in the disk. Our main aim is
to provide models for the gravitational potential of the Galaxy that are fully
analytical but also with a more realistic description of the density
distribution in the disk component. Methods. From the disk model directly based
on the observations (here divided into the thin and thick stellar disks and the
HI and H disks subcomponents), we produce fitted mass models by combining
three Miyamoto-Nagai disk profiles of any "model order" (1, 2, or 3) for each
disk subcomponent. The Miyamoto-Nagai disks are combined with models for the
bulge and "dark halo" components and the total set of parameters is adjusted by
observational kinematic constraints. A model which includes a ring density
structure in the disk, beyond the solar Galactic radius, is also investigated.
Results. The Galactic mass models return very good matches to the imposed
observational constraints. In particular, the model with the ring density
structure provides a greater contribution of the disk to the rotational support
inside the solar circle. The gravitational potential models and their
associated force-fields are described in analytically closed forms, and in
addition, they are also compatible with our best knowledge of the stellar and
gas distributions in the disk component. The gravitational potential models are
suited for investigations of orbits in the Galactic disk.Comment: 22 pages, 13 figures, 11 tables, accepted for publication in A&
A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy
We propose a new, more realistic, description of the perturbed gravitational
potential of spiral galaxies, with spiral arms having Gaussian-shaped groove
profiles. We investigate the stable stellar orbits in galactic disks, using the
new perturbed potential. The influence of the bulge mass on the stellar orbits
in the inner regions of a disk is also investigated. The new description offers
the advantage of easy control of the parameters of the Gaussian profile of its
potential. We find a range of values for the perturbation amplitude from 400 to
800 km^2 s^{-2} kpc^{-1} which implies a maximum ratio of the tangential force
to the axisymmetric force between 3% and 6%, approximately. Good
self-consistency of arm shapes is obtained between the Inner Lindblad resonance
(ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts
to deviate from the imposed logarithmic spiral form. This creates bifurcations
that appear as short arms. Therefore the deviation from a perfect logarithmic
spiral in galaxies can be understood as a natural effect of the 4:1 resonance.
Beyond the 4:1 resonance we find closed orbits which have similarities with the
arms observed in our Galaxy. In regions near the center, in the presence of a
massive bulge, elongated stellar orbits appear naturally, without imposing any
bar-shaped potential, but only extending the spiral perturbation a little
inward of the ILR. This suggests that a bar is formed with a half-size around 3
kpc by a mechanism similar to that of the spiral arms. The potential energy
perturbation that we adopted represents an important step in the direction of
self-consistency, compared to previous sine function descriptions of the
potential. Our model produces a realistic description of the spiral structure,
able to explain several details that were not yet understood.Comment: 12 pag., 11 fig. Accepted for publication in A&A, 2012 December 1
Global aspects of gravitomagnetism
We consider global properties of gravitomagnetism by investigating the
gravitomagnetic field of a rotating cosmic string. We show that although the
gravitomagnetic field produced by such a configuration of matter vanishes
locally, it can be detected globally. In this context we discuss the
gravitational analogue of the Aharonov-Bohm effect.Comment: 10 pages - Typeset using REVTE
Gaussian superpositions in scalar-tensor quantum cosmological models
A free scalar field minimally coupled to gravity model is quantized and the
Wheeler-DeWitt equation in minisuperspace is solved analytically, exhibiting
positive and negative frequency modes. The analysis is performed for positive,
negative and zero values of the curvature of the spatial section. Gaussian
superpositions of the modes are constructed, and the quantum bohmian
trajectories are determined in the framework of the Bohm-de Broglie
interpretation of quantum cosmology. Oscillating universes appear in all cases,
but with a characteristic scale of the order of the Planck scale. Bouncing
regular solutions emerge for the flat curvature case. They contract classically
from infinity until a minimum size, where quantum effects become important
acting as repulsive forces avoiding the singularity and creating an
inflationary phase, expanding afterwards to an infinite size, approaching the
classical expansion as long as the scale factor increases. These are
non-singular solutions which are viable models to describe the early Universe.Comment: 14 pages, LaTeX, 3 Postscript figures, uses graficx.st
Intense CIII] 1907,1909 emission from a strong Lyman continuum emitting galaxy
We have obtained the first complete ultraviolet (UV) spectrum of a strong
Lyman continuum(LyC) emitter at low redshift -- the compact, low-metallicity,
star-forming galaxy J1154+2443 -- with a Lyman continuum escape fraction of 46%
discovered recently. The Space Telescope Imaging Spectrograph spectrum shows
strong Lya and CIII] 1909 emission, as well as OIII] 1666. Our observations
show that strong LyC emitters can have UV emission lines with a high equivalent
width (e.g. EW(CIII]) rest-frame), although their equivalent
widths should be reduced due to the loss of ionizing photons. The intrinsic
ionizing photon production efficiency of J1154+2443 is high, erg Hz, comparable to that of other recently discovered
LyC emitters. Combining our measurements and earlier
determinations from the literature, we find a trend of increasing with increasing CIII] 1909 equivalent width, which can be understood by
a combination of decreasing stellar population age and metallicity. Simple
ionization and density-bounded photoionization models can explain the main
observational features including the UV spectrum of J1154+2443.Comment: 5 pages, 4 figures. Accepted for publication in A&A Letter
Entropy, diffusivity and the energy landscape of a water-like fluid
Molecular dynamics simulations and instantaneous normal mode (INM) analysis
of a fluid with core-softened pair interactions and water-like liquid-state
anomalies are performed to obtain an understanding of the relationship between
thermodynamics, transport properties and the poten- tial energy landscape.
Rosenfeld-scaling of diffusivities with the thermodynamic excess and pair
correlation entropy is demonstrated for this model. The INM spectra are shown
to carry infor- mation about the dynamical consequences of the interplay
between length scales characteristic of anomalous fluids, such as bimodality of
the real and imaginary branches of the frequency distribu- tion. The INM
spectral information is used to partition the liquid entropy into two
contributions associated with the real and imaginary frequency modes; only the
entropy contribution from the imaginary branch captures the non-monotonic
behaviour of the excess entropy and diffusivity in the anomalous regime of the
fluid
Three novel mutations in the CFTR gene identified in Galician patients
AbstractWe report three novel CFTR missense mutations detected in Spanish patients from Galicia (North West of Spain). In the first case, a patient homozygous for a novel S1045Y mutation died due to pulmonary problems. In the other two cases, both heterozygous for novel mutations combined with the F508del mutation, clinical symptoms were different depending on the mutation, detected as M595I and A107V
The GREATS H+[OIII] Luminosity Function and Galaxy Properties at : Walking the Way of JWST
The James Webb Space Telescope will allow to spectroscopically study an
unprecedented number of galaxies deep into the reionization era, notably by
detecting [OIII] and H nebular emission lines. To efficiently prepare
such observations, we photometrically select a large sample of galaxies at
and study their rest-frame optical emission lines. Combining data from
the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and
from HST, we perform spectral energy distribution (SED) fitting, using
synthetic SEDs from a large grid of photoionization models. The deep
Spitzer/IRAC data combined with our models exploring a large parameter space
enables to constrain the [OIII]+H fluxes and equivalent widths for our
sample, as well as the average physical properties of galaxies, such
as the ionizing photon production efficiency with
. We
find a relatively tight correlation between the [OIII]+H and UV
luminosity, which we use to derive for the first time the [OIII]+H
luminosity function (LF) at . The [OIII]+H LF is higher
at all luminosities compared to lower redshift, as opposed to the UV LF, due to
an increase of the [OIII]+H luminosity at a given UV luminosity from
to . Finally, using the [OIII]+H LF, we make
predictions for JWST/NIRSpec number counts of galaxies. We find that
the current wide-area extragalactic legacy fields are too shallow to use JWST
at maximal efficiency for spectroscopy even at 1hr depth and JWST
pre-imaging to mag will be required.Comment: 13 pages, 9 figures, accepted for publication in MNRA
A review on power electronic converters for modular BMS with active balancing
Electric vehicles (EVs) are becoming increasingly popular due to their low emissions, energy efficiency, and reduced reliance on fossil fuels. One of the most critical components in an EV is the energy storage and management system, which requires compactness, lightweight, high efficiency, and superior build quality. Active cell equalization circuits such as those used in battery management systems (BMS) have been developed to balance the voltage and state of charge (SoC) of individual cells, ensuring the safety and reliability of the energy storage system. The use of these types of equalization circuits offers several benefits including improved battery performance, extended battery life, and enhanced safety, which are essential for the successful adoption of EVs. This paper provides a comprehensive overview of the research works related to active cell equalization circuits. This review highlights the important aspects, advantages and disadvantages, and specifications.This work was supported by FCT—Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope UIDB/00319/2020. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018, granted by the Portuguese FCT foundation
- …