945 research outputs found

    Poverty Effects from Trade Liberalisation in Argentina

    Get PDF
    This paper aims at analyzing the linkages between international trade openness and poverty in Argentina. Under a specific-factors setting, a two-step procedure is presented. In the first stage the change in prices of goods and factors in both tradable and non-tradable sectors, after a trade liberalisation episode, is considered. In a second step, these variations are applied to assess the changes in poverty and households’ welfare. A micro-simulation approach, using households’ survey data, is applied in this last stage. The results of the research are important since they provide an assessment of the impact trade policies have on poverty.

    Design and cryogenic operation of a hybrid quantum-CMOS circuit

    Full text link
    Silicon-On-Insulator nanowire transistors of very small dimensions exhibit quantum effects like Coulomb blockade or single-dopant transport at low temperature. The same process also yields excellent field-effect transistors (FETs) for larger dimensions, allowing to design integrated circuits. Using the same process, we have co-integrated a FET-based ring oscillator circuit operating at cryogenic temperature which generates a radio-frequency (RF) signal on the gate of a nanoscale device showing Coulomb oscillations. We observe rectification of the RF signal, in good agreement with modeling

    On the nature of X-Ray Flashes in the SWIFT era

    Get PDF
    X-Ray Flashes (XRFs) are soft gamma-ray bursts whose nature is not clear. Their soft spectrum can be due to cosmological effects (high redshift), an off-axis view of the jet or can be intrinsic to the source. We use SWIFT observations to investigate different scenarios proposed to explain their origin. We have made a systematic analysis of the afterglows of XRFs with known redshift observed by SWIFT. We derive their redshift and luminosity distributions, and compare their properties with a sample of normal GRBs observed by the same instrument. The high distance hypothesis is ruled out by the redshift distribution of our sample of XRFs, indicating that, at least for our sample, the off-axis and sub-energetic hypotheses are preferred. Of course, this does not exclude that some XRFs without known redshift could be at high distance. However we find that taking into account the sensitivity of the BAT instrument, XRFs cannot be detected by SWIFT beyond ~ 3. The luminosity distribution of XRF afterglows is similar to the GRB one. This would rule out most off-axis models, but for the homogeneous jet model. However this model predicts a GRB rate uncomfortably near the observed rate of supernovae. This implies that XRFs, at least those of our sample, are intrinsically soft.Comment: 4 pages, 2 color figures. Astronomy and Astrophysics Letters, accepte

    Pauli spin blockade in CMOS double quantum dot devices

    Full text link
    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.Comment: 5 pages , 4 figure

    Secreted factors from olfactory mucosa cells expanded as free-floating spheres increase neurogenesis in olfactory bulb neurosphere cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The olfactory epithelium is a neurogenic tissue comprising a population of olfactory receptor neurons that are renewed throughout adulthood by a population of stem and progenitor cells. Because of their relative accessibility compared to intra-cranially located neural stem/progenitor cells, olfactory epithelium stem and progenitor cells make attractive candidates for autologous cell-based therapy. However, olfactory stem and progenitor cells expand very slowly when grown as free-floating spheres (olfactory-spheres) under growth factor stimulation in a neurosphere assay.</p> <p>Results</p> <p>In order to address whether olfactory mucosa cells extrinsically regulate proliferation and/or differentiation of immature neural cells, we cultured neural progenitor cells derived from mouse neonatal olfactory bulb or subventricular zone (SVZ) in the presence of medium conditioned by olfactory mucosa-derived spheres (olfactory-spheres). Our data demonstrated that olfactory mucosa cells produced soluble factors that affect bulbar neural progenitor cell differentiation but not their proliferation when compared to control media. In addition, olfactory mucosa derived soluble factors increased neurogenesis, especially favouring the generation of non-GABAergic neurons. Olfactory mucosa conditioned medium also contained several factors with neurotrophic/neuroprotective properties. Olfactory-sphere conditioned medium did not affect proliferation or differentiation of SVZ-derived neural progenitors.</p> <p>Conclusion</p> <p>These data suggest that the olfactory mucosa does not contain factors that are inhibitory to neural stem/progenitor cell proliferation but does contain factors that steer differentiation toward neuronal phenotypes. Moreover, they suggest that the poor expansion of olfactory-spheres may be in part due to intrinsic properties of the olfactory epithelial stem/progenitor cell population.</p

    Charge dynamics and spin blockade in a hybrid double quantum dot in silicon

    Get PDF
    Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer due to the semiconductor vacuum character of silicon and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability and scalability. Here we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterise the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time T1 of 100 ns. Additionally, we demonstrate spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.Comment: 6 pages, 4 figures, supplementary information (3 pages, 4 figures
    corecore