460 research outputs found

    Very high energy gamma-rays and the Hubble parameter

    Full text link
    A new method, based on the absorption of very high-energy gamma-rays by the cosmic infrared background, is proposed to constrain the value of the Hubble constant. As this value is both fundamental for cosmology and still not very well measured, it is worth developing such alternative methods. Our lower limit at the 68% confidence level is H0 > 74 km/s/Mpc, leading, when combined with the HST results, to H0 ~ 76 km/s/Mpc. Interestingly, this value, which is significantly higher than the usually considered one, is in exact agreement with other independent approaches based on baryonic acoustic oscillations and X-ray measurements. Forthcoming data from the experiments HESS-2 and CTA should help improving those results. Finally, we briefly mention a plausible correlation between absorption by the extragalactic background light and the absence of observation of gamma-ray bursts (GRBs) at very high energies.Comment: Proc. of the 12th Marcel Grossmann meeting on general relativity. 3 pages, 1 figur

    Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides

    Get PDF
    Anthelmintic bioactivity against gastrointestinal nematodes has been associated with leguminous forages supporting the hypothesis of a role of condensed tannins. However, the possibility that other compounds might also been involved has received less consideration. Using bio-guided fractionation, the current study aimed at characterising the biochemical nature of the active compounds present in sainfoin (Onobrychis viciifolia), previously identified as an anthelmintic leguminous forage. The effects of sainfoin extracts were evaluated on 3rd stage larvae (L3) of Haemonchus contortus by using a larval migration inhibition (LMI) assay. Comparison of extracts obtained with several solvent systems showed that the bioactivity was associated with the 70:30 acetone/water extract. Further fractionation of the later allowed the separation of phenolic compounds. By use of a dialysis method, compounds were separated with a molecular weight cut-off of 2000 Da. The in vitro anthelmintic effects of the fraction with condensed tannins was confirmed. In the fraction containing molecules of MW < 2000 Da, 3 flavonol glycosides were identified as rutin, nicotiflorin and narcissin. At 1200 ÎŒg/ml, each inhibited significantly migration of larvae. Addition of polyvinyl pyrrolidone (PVPP) to both fractions before incubation restore larval migration. These results confirmed the role of both tannins and flavonol glycosides in the anthelmintic properties of sainfoin

    Analysis of a dry friction problem under small displacements: application to a bolted joint

    Get PDF
    This study presents an analysis of the problem of macroscopic contact of steel upon steel with dry friction, in the specific case of a bolted joint. The configurations of these types of joints result in very small displacements and interface sliding velocities. To understand how the system formed by the two surfaces in contact works, an experiment was carried out. The analysis of the results obtained made it possible to define the behavior of the system and to model the variations of the main parameters by original and continuous laws. These laws accurately correlate to all the results of the tests effectuated

    Kerr-Gauss-Bonnet Black Holes: An Analytical Approximation

    Full text link
    Gauss-Bonnet gravity provides one of the most promising frameworks to study curvature corrections to the Einstein action in supersymmetric string theories, while avoiding ghosts and keeping second order field equations. Although Schwarzschild-type solutions for Gauss-Bonnet black holes have been known for long, the Kerr-Gauss-Bonnet metric is missing. In this paper, a five dimensional Gauss-Bonnet approximation is analytically derived for spinning black holes and the related thermodynamical properties are briefly outlined.Comment: 5 pages, 1 figur

    Observations of TeV gamma rays from Markarian 501 at large zenith angles

    Get PDF
    TeV gamma rays from the blazar Markarian 501 have been detected with the University of Durham Mark 6 atmospheric Cerenkov telescope using the imaging technique at large zenith angles. Observations were made at zenith angles in the range 70 - 73 deg during 1997 July and August when Markarian 501 was undergoing a prolonged and strong flare.Comment: 7 pages, 2 figures, accepted for publication in J. Phys. G.: Nucl. Part. Phy

    The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    Full text link
    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2<Z<~45 in various beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200

    Black Hole Relics in String Gravity: Last Stages of Hawking Evaporation

    Full text link
    One of the most intriguing problem of modern physics is the question of the endpoint of black hole evaporation. Based on Einstein-dilaton-Gauss-Bonnet four dimensional string gravity model we show that black holes do not disappear and that the end of the evaporation process leaves some relic. The possibility of experimental detection of the remnant black holes is investigated. If they really exist, such objects could be a considerable part of the non baryonic dark matter in our Universe.Comment: 15 pages, accepted to Class. Quant. Gra

    Observational hints on the Big Bounce

    Full text link
    In this paper we study possible observational consequences of the bouncing cosmology. We consider a model where a phase of inflation is preceded by a cosmic bounce. While we consider in this paper only that the bounce is due to loop quantum gravity, most of the results presented here can be applied for different bouncing cosmologies. We concentrate on the scenario where the scalar field, as the result of contraction of the universe, is driven from the bottom of the potential well. The field is amplified, and finally the phase of the standard slow-roll inflation is realized. Such an evolution modifies the standard inflationary spectrum of perturbations by the additional oscillations and damping on the large scales. We extract the parameters of the model from the observations of the cosmic microwave background radiation. In particular, the value of inflaton mass is equal to m=(2.6±0.6)⋅1013m=(2.6 \pm 0.6) \cdot 10^{13} GeV. In our considerations we base on the seven years of observations made by the WMAP satellite. We propose the new observational consistency check for the phase of slow-roll inflation. We investigate the conditions which have to be fulfilled to make the observations of the Big Bounce effects possible. We translate them to the requirements on the parameters of the model and then put the observational constraints on the model. Based on assumption usually made in loop quantum cosmology, the Barbero-Immirzi parameter was shown to be constrained by Îł<1100\gamma<1100 from the cosmological observations. We have compared the Big Bounce model with the standard Big Bang scenario and showed that the present observational data is not informative enough to distinguish these models.Comment: 25 pages, 8 figures, JHEP3.cl

    The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
    • 

    corecore