10 research outputs found

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory forvery high energy gamma-ray astronomy over the next decade and beyond. Thescientific potential of CTA is extremely broad: from understanding the role ofrelativistic cosmic particles to the search for dark matter. CTA is an explorerof the extreme universe, probing environments from the immediate neighbourhoodof black holes to cosmic voids on the largest scales. Covering a huge range inphoton energy from 20 GeV to 300 TeV, CTA will improve on all aspects ofperformance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to providefull sky coverage and will hence maximize the potential for the rarestphenomena such as very nearby supernovae, gamma-ray bursts or gravitationalwave transients. With 99 telescopes on the southern site and 19 telescopes onthe northern site, flexible operation will be possible, with sub-arraysavailable for specific tasks. CTA will have important synergies with many ofthe new generation of major astronomical and astroparticle observatories.Multi-wavelength and multi-messenger approaches combining CTA data with thosefrom other instruments will lead to a deeper understanding of the broad-bandnon-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory,with all data available on a public archive after a pre-defined proprietaryperiod. Scientists from institutions worldwide have combined together to formthe CTA Consortium. This Consortium has prepared a proposal for a CoreProgramme of highly motivated observations. The programme, encompassingapproximately 40% of the available observing time over the first ten years ofCTA operation, is made up of individual Key Science Projects (KSPs), which arepresented in this document

    Designing and implementing sample and data collection for an international genetics study: The Type 1 Diabetes Genetics Consortium (T1DGC)

    No full text
    Background and Purpose The Type 1 Diabetes Genetics Consortium (T1DGC) is an international project whose primary aims are to: (a) discover genes that modify type 1 diabetes risk; and (b) expand upon the existing genetic resources for type 1 diabetes research. The initial goal was to collect 2500 affected sibling pair (ASP) families worldwide. Methods T1DGC was organized into four regional networks (Asia-Pacific, Europe, North America, and the United Kingdom) and a Coordinating Center. A Steering Committee, with representatives from each network, the Coordinating Center, and the funding organizations, was responsible for T1DGC operations. The Coordinating Center, with regional network representatives, developed study documents and data systems. Each network established laboratories for: DNA extraction and cell line production; human leukocyte antigen genotyping; and autoantibody measurement. Samples were tracked from the point of collection, processed at network laboratories and stored for deposit at National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories. Phenotypic data were collected and entered into the study database maintained by the Coordinating Center. Results T1DGC achieved its original ASP recruitment goal. In response to research design changes, the T1DGC infrastructure also recruited trios, cases, and controls. Results of genetic analyses have identified many novel regions that affect susceptibility to type 1 diabetes. T1DGC created a resource of data and samples that is accessible to the research community. Limitations Participation in T1DGC was declined by some countries due to study requirements for the processing of samples at network laboratories and/or final deposition of samples in NIDDK Central Repositories. Re-contact of participants was not included in informed consent templates, preventing collection of additional samples for functional studies. Conclusions T1DGC implemented a distributed, regional network structure to reach ASP recruitment targets. The infrastructure proved robust and flexible enough to accommodate additional recruitment. T1DGC has established significant resources that provide a basis for future discovery in the study of type 1 diabetes genetics. © The Author(s) 2010

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    No full text
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele. © 2022, The Author(s)

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    No full text
    corecore