16,797 research outputs found

    Path Integral and the Induction Law

    Full text link
    We show how the induction law is correctly used in the path integral computation of the free particle propagator. The way this primary path integral example is treated in most textbooks is a little bit missleading.Comment: 5 latex pages, no figure

    Double transverse-spin asymmetries in Drell--Yan and J/ψJ/\psi production from proton--antiproton collisions

    Get PDF
    We perform a NLO numerical study of the double transverse-spin asymmetries in the J/ψJ/\psi resonance region for proton--antiproton collisions. We analyze the large xx kinematic region, relevant for the proposed PAX experiment at GSI, and discuss the implication of the results for the extraction of the transversity densities.Comment: 8 pages, 6 figures, Talk given at "Transversity 2005" Como, Italy 7-10 Sep. 2005; eds. World Scientific in pres

    Observation of a New Fluxon Resonant Mechanism in Annular Josephson Tunnel Structures

    Full text link
    A novel dynamical state has been observed in the dynamics of a perdurbed sine-Gordon system. This resonant state, has been experimentally observed as a singularity in the dc current voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. With this respect, it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Evidence for Thermally Activated Spontaneous Fluxoid Formation in Superconducting Thin-Film Rings

    Full text link
    We have observed spontaneous fluxoid generation in thin-film rings of the amorphous superconductor Mo3_3Si, cooled through the normal-superconducting transition, as a function of quench rate and externally applied magnetic field, using a variable sample temperature scanning SQUID microscope. Our results can be explained using a model of freezout of thermally activated fluxoids, mediated by the transport of bulk vortices across the ring walls. This mechanism is complementary to a mechanism proposed by Kibble and Zurek, which only relies on causality to produce a freezout of order parameter fluctuations.Comment: 4 pages, 3 figure

    Voltage-induced Shapiro steps in a superconducting multi-terminal structure

    Full text link
    When a superconducting tunnel junction at a finite voltage is irradiated with microwaves, the interplay between the alternating Josephson current and the ac field gives rise to steps in the dc current known as Shapiro steps. In this work we predict that in a mesoscopic structure connected to several superconducting terminals one can induce Shapiro-like steps in the absence of any external radiation simply by tuning the voltages of the leads. To illustrate this effect we make quantitative predictions for a three-terminal structure which comprises a diffusive superconductor-normal metal-superconductor junction and a tunneling probe, a set-up which can be realized experimentally.Comment: revtex4, 5 pages, 5 figures, to appear in Phys. Rev.

    N-particle sector of quantum field theory as a quantum open system

    Full text link
    We give an exposition of a technique, based on the Zwanzig projection formalism, to construct the evolution equation for the reduced density matrix corresponding to the n-particle sector of a field theory. We consider the case of a scalar field with a gϕ3g \phi^3 interaction as an example and construct the master equation at the lowest non-zero order in perturbation theory.Comment: 12 pages, Late

    Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives

    Full text link
    We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of the lattice constant of the substrate times the frequency. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a non-zero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure

    Ratchet-like dynamics of fluxons in annular Josephson junctions driven by bi-harmonic microwave fields

    Full text link
    Experimental observation of the unidirectional motion of a topological soliton driven by a bi-harmonic ac force of zero mean is reported. The observation is made by measuring the current-voltage characteristics for a fluxon trapped in an annular Josephson junction that was placed into a microwave field. The measured dependence of the fluxon mean velocity (rectified voltage) at zero dc bias versus the phase shift between the first and second harmonic of the driving force is in qualitative agreement with theoretical expectations.Comment: 6 figure

    Measurement of the current-phase relation of superconducting atomic contacts

    Get PDF
    We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
    corecore