309 research outputs found

    Resonant transmission through an open quantum dot

    Full text link
    We have measured the low-temperature transport properties of a quantum dot formed in a one-dimensional channel. In zero magnetic field this device shows quantized ballistic conductance plateaus with resonant tunneling peaks in each transition region between plateaus. Studies of this structure as a function of applied perpendicular magnetic field and source-drain bias indicate that resonant structure deriving from tightly bound states is split by Coulomb charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure

    Thixotropy in macroscopic suspensions of spheres

    Get PDF
    An experimental study of the viscosity of a macroscopic suspension, i.e. a suspension for which Brownian motion can be neglected, under steady shear is presented. The suspension is prepared with a high packing fraction and is density-matched in a Newtonian carrier fluid. The viscosity of the suspension depends on the shear rate and the time of shearing. It is shown for the first time that a macroscopic suspension shows thixotropic viscosity, i.e. shear-thinning with a long relaxation time as a unique function of shear. The relaxation times show a systematic decrease with increasing shear rate. These relaxation times are larger when decreasing the shear rates, compared to those observed after increasing the shear. The time scales involved are about 10000 times larger than the viscous time scale and about 1000 times smaller than the thermodynamic time scale. The structure of the suspension at the outer cylinder of a viscometer is monitored with a camera, showing the formation of a hexagonal structure. The temporal decrease of the viscosity under shear coincides with the formation of this hexagonal pattern

    Measuring the decoherence rate in a semiconductor charge qubit

    Get PDF
    We describe a method by which the decoherence time of a solid state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that, by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.Comment: 9 pages, 6 figures, revtex

    Boundary Liouville theory at c=1

    Full text link
    The c=1 Liouville theory has received some attention recently as the Euclidean version of an exact rolling tachyon background. In an earlier paper it was shown that the bulk theory can be identified with the interacting c=1 limit of unitary minimal models. Here we extend the analysis of the c=1-limit to the boundary problem. Most importantly, we show that the FZZT branes of Liouville theory give rise to a new 1-parameter family of boundary theories at c=1. These models share many features with the boundary Sine-Gordon theory, in particular they possess an open string spectrum with band-gaps of finite width. We propose explicit formulas for the boundary 2-point function and for the bulk-boundary operator product expansion in the c=1 boundary Liouville model. As a by-product of our analysis we also provide a nice geometric interpretation for ZZ branes and their relation with FZZT branes in the c=1 theory.Comment: 37 pages, 1 figure. Minor error corrected, slight change in result (1.6

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    Get PDF
    We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study aims to address the role of the host galaxy in nuclear activity and confront outstanding controversies in optical/IR imaging surveys. Early results show possible relationships between Seyfert activity and HI extent, content and the prevalence of small, nearby gas-rich dwarf galaxies (M(HI)~10^7 Msun); results will be tested via rigorous comparison with control galaxies. Initial results from our optical followup study of 15 of our galaxies using the SAURON integral field unit on the WHT suggest a possible difference between Seyfert and inactive stellar and gaseous kinematics that support the conclusion that internal kinematics of galaxies are the key to nuclear activity.Comment: 6 pages to be published in the proceedings of "The Fate of Gas in Galaxies", held in Dwingeloo, July 200

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Baryonium, tetra-quark state and glue-ball in large N_c QCD

    Full text link
    From the large-N_c QCD point of view, baryonia, tetra-quark states, hybrids, and glueballs are studied. The existence of these states is argued for. They are constructed from baryons. In N_f=1 large N_c QCD, a baryonium is always identical to a glueball with N_c valence gluons. The ground state 0^{-+} glueball has a mass about 2450 MeV. f_0(1710) is identified as the lowest 0^{++} glueball. The lowest four-quark nonet should be f_0(1370), a_0(1450), K^*_0(1430) and f_0(1500). Combining with the heavy quark effective theory, spectra of heavy baryonia and heavy tetra-quark states are predicted. 1/N_c corrections are discussed.Comment: 16 pages, 3 figure

    A new proposal for Galactic dark matter: Effect of f(T) gravity

    Full text link
    It is still a challenging problem to the theoretical physicists to know the exact nature of the galactic dark matter which causes the galactic rotational velocity to be more or less a constant. We have proposed that the dark matter as an effect of f(T) gravity. Assuming the flat rotation curves as input we have shown that f(T) gravity can explain galactic dynamics. Here, we don' have to introduce dark matter. Spacetime metric inspired by f(T) gravity describes the region up to which the tangential velocity of the test particle is constant. This inherent property appears to be enough to produce stable circular orbits as well as attractive gravity.Comment: 7 pages and 1 figure. Minor corrections are made. Accepted for publication in Int.J.Theor.Phy
    corecore