860 research outputs found

    Unsteady aerodynamics of offshore floating wind turbines using free vortex wake model

    Get PDF
    Among the offshore floating wind turbine software packs, the blade element momentum theory (BEM) and generalized dynamic wake (GDW) model are widely used. A free vortex wake model has been coupled to FAST v7 to do a comparative dynamic analysis between using the BEM theory and GDW method on offshore floating wind turbine. The verification test on the free-wake model has been performed according to the NREL VI experiment in steady and yaw conditions. To analyze the unsteady aerodynamics of floating wind turbine, the OC3 spar type wind turbine has been used to do simulations. The global performances on both the rotor and the platform and their interactions are shown and discussed

    How to determine the principal dimensions of FPSO vessel

    Get PDF
    The evaluation of the principal dimensions of the Floating Production, Storage and Offloading (FPSO) system is one of the most critical tasks at the initial design stage of the vessel. It is therefore important to get this right from the onset. This paper presents a simple method of determining the optimal principal dimensions of FPSO vessels of any specified oil storage capacity. An interactive programme, the Principal Dimensions Programme (PDP) has therefore been designed to accurately evaluate them based on the required cubic number (LĂ— B Ă— D) and the needed oil storage capacity (as the modern segregated vessels are volume-limited). The prediction of these dimensions has been given to ensure a safe operation and optimal performance of the vessels with regards to their motion responses in deep sea waves

    Fragility reduction of offshore wind turbines using tuned liquid column dampers

    Get PDF
    High flexibility of offshore wind turbines (OWTs) makes them vulnerable to excessive vibrations. This paper studies vibration control of offshore wind turbines induced by multi-hazard excitations. A model consisting of entire offshore wind turbine foundation and tower controlled by tuned liquid column dampers(TLCD) considering nonlinear soil pile interaction is established. The model is subjected to wave, wind, and seismic loading. The effect of severity of earthquake on the performance of the structural control device is investigated. A fragility analysis based on acceleration capacity thresholds is performed to estimate reliability improvement using the structural control devices. The fitted fragility functions based on multiple stripes analysis are constructed and compared with the empirical cumulative distribution curves. The results suggest that the use of an optimal TLCD with a mass ratio of 2.5% reduces the fragility of the system by as much as 6% and 12% for operational and parked conditions, respectively

    Analysis on the hull girder ultimate strength of a bulk carrier using simplified method based on an incremental-iterative approach

    Get PDF
    The hull girder ultimate strength of a typical bulk carrier is analyzed using a simplified method based on an incremental-iterative approach. First, vertical bending moment is examined by seven different methods. The moment versus curvature curves and the values of the ultimate longitudinal moments at collapse states are determined for both hogging and sagging cases. Second, the ultimate strength under coupled vertical and horizontal bending moment is accounted. An interaction curve is obtained, which corresponds to the results of series of calculation for the ship hull subject to bending conditions with different angles of curvature. It is found that the interaction curve is asymmetrical because the hull cross section is not symmetrical with respect to the horizontal axis and the structural response of the elements under compression is different from that under tension due to nonlinearity caused by buckling. The angles of the resultant bending moment vector and that of the curvature vector are different in investigated cases. The interaction design equations proposed by other researches are also addressed to discuss the results presented by this study

    Different Bayesian methods for updating the fatigue crack size distribution in a tubular joint

    Get PDF
    Offshore platforms are prone to fatigue damage. To evaluate the fatigue damage, these platforms are periodically inspected during the in-service lifetime. Inspection activities provide additional information, which includes detection and measurement of crack size. A Bayesian framework can be used to update the probability distribution of the uncertain parameters such as crack size. After updating the distribution of the crack size, it is possible to improve the estimation of joint reliability. The main purpose of this study is to present different methods of Bayesian inference to update the probability distribution of the crack size using the inspection results and to demonstrate how the results are different. Two different methods are presented; analytical (conjugate) and numerical methods. The advantages and shortcomings of each method are discussed. To compare the results of the analytical and numerical methods, two different situations are considered; updating the crack size distribution for a particular joint and updating the crack size distribution for several joints that have almost the same conditions. Although the proposed methodology can be applied to different kinds of structures, an example of tubular joints in a specific jacket platform is presented to demonstrate the proposed approach and to compare the results of two methods

    Methodology for Designing Fault-Protection Software

    Get PDF
    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture

    Optimising Structural Loading and Power Production for Floating Wave Energy Converters

    Get PDF
    This is the author accepted manuscript. The final version is available from EWTEC via the link in this record.This paper investigates the design trade-off between power production and structural loading for Wave Energy Converters (WECs), based on tank test results for the Albatern 12S floating wave energy array. This work feeds into the design development process, which is currently in the concept design and testing phase. The paper focuses on two methods for reducing structural loading: limiting the power take off (PTO) torque generation capacity (for operational loads), and controlling the PTO damping (for extreme loads). The torque that can be generated by the primary PTO mechanism affects the size (and cost) of the structural components within the device. Increased torque results in a potentially greater power capture, but also greater structural loading. It is therefore important to highlight the target torque limit early in the design process. The aim of this work is to identify the optimum torque limit to refine the design towards the lowest overall Levelised Cost of Energy (LCoE). In addition, a high-level investigation of the impact of PTO damping on extreme loading has been carried out, to help to identify appropriate “operational” and “survival” sea states for the device. The paper calculates an optimum torque limit for the device at the West Harris site and quantifies the trade-off between Annual Energy Production and structural cost, using the LCoE as an optimisation criteria. The approach is in principle applicable to other technologies, if the design drivers are adjusted to the technology’s working principle.Tank testing was funded by Wave Energy Scotland (WES) as part of the Novel Wave Energy Converter Stage 1 (NWEC1) programme. This work has been carried out as part of the IDCORE programme, funded by the Energy Technology Institute and RCUK Energy programme (grant no. EP/J500847/1

    Updating the distributions of uncertain parameters involved in fatigue analysis

    Get PDF
    Fatigue is an important failure mode in offshore jacket platforms. To evaluate the fatigue damage, these platforms are periodically inspected during their lifetime. Regarding fatigue damage, the information from inspection consists of crack measurement. A Bayesian framework can be used to update the probability distribution of the crack size. The main purpose of this study is to develop a framework to update the probability distributions of all uncertain parameters involved in the fatigue crack growth analysis. This methodology maximizes the benefit of the inspection results by updating several uncertain parameters involved in the fracture mechanics approach. Two sets of cracks are used to obtain the updated distributions for uncertain parameters; prior cracks and simulated reality cracks. By comparing these cracks, the updated distributions for uncertain parameters are obtained. The updated crack size distribution can be used to update the estimation of the probability of failure. To demonstrate the developed framework, a tubular joint in a specific jacket platform is considered and the framework is applied for that joint. The results of the developed methodology indicate that the updated distributions of uncertain parameters shift towards the simulated reality distributions

    Steel-concrete connections for floating wave energy converters

    Get PDF
    In order to make wave power technologies competitive within the overall energy market, there needs to be significant reductions in the levelised cost of energy (LCoE). One area for potential cost reduction is the use of cheaper materials that are suitable for use in the harsh marine environment, such as reinforced concrete, which gives good corrosion and fatigue properties while providing excellent strength and stiffness at low unit cost. Concrete has the potential to be used for a wide range of wave energy device configurations, however in general use has been limited to nearshore fixed bottom wave energy converters. To date, no dynamic floating wave energy devices have successfully utilised reinforced concrete as structural material, mainly due to the uncertainty surrounding the behaviour of critical dynamic connections between concrete sections and other materials. This paper explores the main issues surrounding steel-concrete connections for floating wave energy converters, providing a review of available design options and standards and assessing the applicability of these to WECs. A methodology is proposed for the evaluation of connection options, and a case study of the Squid 12S floating WEC (developed by Albatern) is presented.This work has been carried out as part of the IDCORE programme, funded by the Energy Technology Institute and RCUK Energy programme (grant no. EP/J500847/1
    • …
    corecore