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ABSTRACT 

 

The hull girder ultimate strength of a typical bulk carrier is analyzed using simplified method based on 

an incremental – iterative approach. First, vertical bending moment is examined by seven different 

methods. The moment versus curvature curves and the values of the ultimate longitudinal moments at 

collapse states are determined for both hogging and sagging cases. Secondly, the ultimate strength 

under coupled vertical and horizontal bending moment is accounted. An interaction curve is obtained 

corresponding to the results of series of calculation for the ship hull subject to bending conditions with 

different angles of curvature. It is found that the interaction curve is asymmetrical because the hull 

cross-section is not symmetrical with respect to horizontal axis and the structural response of the 

elements under compression is different from that under tension due to nonlinearity caused by 

buckling. The angles of the resultant bending moment vector and that of the curvature vector are 

different in investigated cases. The interaction design equations proposed by other researches are also 

addressed to discuss the results presented by this study. 
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1   INTRODUCTION 

 

A ship hull is a structure composed of plating stiffened by girders and stiffeners. The hull is subject to 

loading generated by hull weight, cargo, equipment etc. and buoyancy force. The loading cause vertical 

and horizontal bending moments, vertical and horizontal shear forces, and torsional moment. Essential 

in estimation of the hull strength is the vertical bending moment as generating the largest stresses in the 

ship structures, especially in the middle part of the ship hull. However, a ship is in general subjected to 

both vertical and horizontal bending moments, particularly in a rough sea with significant roll motions. 

The ultimate hull girder strength under horizontal bending is generally higher than vertical bending. 

This is because the ship’s breadth is usually larger than its depth. 

 

Yao et al., (1994) studied on the ultimate hull girder strength interaction relationship under combined 

vertical and horizontal bending for double hull tanker. Mansour et al., (1995) presented an empirical 

interaction equations based on the results of calculations of one tanker, one container ship and one 

cruiser. Paik et al., (1996) discussed the ultimate hull girder strength under combined vertical and 

horizontal bending moment using ALPS/ISUM program for eleven vessels: five tankers, two bulk 

carriers, two container vessels and two cruisers. It was found that the ultimate strength interaction 

relationship for combined loading was unaffected by the level of initial imperfections, even though the 

ultimate strengths itself would be reduced as the initial imperfections increase. The simple expression 

was proposed, regardless of initial imperfection level. Another interaction equation was proposed by 

Gordo and Guedes Soares, (1996, 1997) based on the results for five tankers and six container ships. 

Rizzuto, (1997) also discussed on this subject. Hu et al., (2001) analyzed the ultimate longitudinal 

strength of a typical bulk carrier by using a simplified method under combined vertical and horizontal 

bending moments. An interaction equation suitable for bulk carrier was proposed based on the results 

of the investigated ship. 

 

Ozguc et al., (2006a, 2005b) have calculated the ultimate coupled vertical and horizontal bending 

moment capacity on single side skin and double side skin bulk carriers which corresponding to intact 

and investigated various collision damage scenarios, in which a progressive collapse analysis based on 



Smith’s method was carried out. It has been noted that the combined effect of the vertical and 

horizontal bending moments is important, especially when the ship is damaged. 

 

Ozguc et al., (2007a) have presented the most extensive investigation of the hull girder ultimate 

strength under coupled bending moment. The main objective of the study was to develop hull girder 

ultimate strength interaction relationships useful for the ship designs subject to a combination of 

vertical and horizontal bending moments, where the ordinary Smith’s method was employed using a 

developed computer code NEPTUNE with average stress – average strain relationship of element. The 

procedure adopted was applied to analyze on the seventeen ships such as nine tankers, five bulk 

carriers, one general cargo and two container vessels. The findings obtained were used to develop a 

rapid procedure for the assessment of the ultimate capacity of the hull girder. 

 

In this paper, the hull girder ultimate strength of a typical bulk carrier is analyzed using simplified 

method based on an incremental – iterative approach. First, vertical bending moment is examined by 

seven different methods. The moment versus curvature curves and the values of the ultimate 

longitudinal moments at collapse states are determined for both hogging and sagging cases. Secondly, 

the ultimate strength under coupled vertical and horizontal bending moment is accounted. An 

interaction curve is obtained corresponding to the results of series of calculation for the ship hull 

subject to bending conditions with different angles of curvature. It is found that the interaction curve is 

asymmetrical because the hull cross-section is not symmetrical with respect to horizontal axis and the 

structural response of the elements under compression is different from that under tension due to 

nonlinearity caused by buckling. The angles of the resultant bending moment vector and that of the 

curvature vector are different in investigated cases. The interaction design equations proposed by other 

researches are also addressed to discuss the results presented by this study. 

 

2   FEATURES OF THE METHOD 

 

A progressive collapse analysis based on the Smith method (1977) is carried out in this study. In this 

approach, the ultimate hull girder bending moment capacity is defined as the peak value of the curve 

with vertical bending moment versus the curvature of the ship cross section. The curve is obtained by 



means of an incremental – iterative approach.  Each step of the incremental procedure is represented by 

the calculation of the bending moment, which acts on the hull transverse section as the effect of an 

imposed curvature. For each step, the curvature value is obtained by summing an increment of 

curvature to the value relevant to the previous step. This increment of the curvature corresponds to an 

increment of the rotation angle of the hull girder transverse section around its horizontal axis. This 

rotation induces axial strains in each hull structural element, whose value depends on the position of 

the element. In hogging condition, the structural elements above the neutral axis are lengthened, while 

the elements below the neutral axis are shortened. Vice-versa in sagging condition. 

The stress induced in each structural element by the strain is obtained from the load-end shortening 

curve of the element, which takes into account the behavior of the element in the non-linear elastic-

plastic domain. The distribution of the stresses induced in all the elements composing the hull 

transverse section determines, for each step, a variation of the neutral axis position, since the 

relationship is non-linear. The new position of the neutral axis relevant to the step considered is 

obtained by means of an iterative process, imposing the equilibrium among the stresses acting in all the 

hull elements. Once the position of the neutral axis position of the neutral axis is known and the 

relevant stress distribution in the section structural elements is obtained, the bending moment of the 

section around the new position of the neutral axis, which corresponds to the curvature imposed in the 

step considered, is obtained by summing the contribution given by each element stress. In applying the 

procedure described in above, the following assumption are generally made, 

• The ultimate strength is calculated at the hull transverse sections between two adjacent 

transverse webs 

• The hull girder transverse section remains plane during each curvature increment 

• The hull material has an elastic-plastic behavior 

• The hull girder transverse section is divided into a set of elements, which are considered to act 

independently 

• Overall grillage collapse is avoided by sufficiently strong transverse frames 

 

3 THE FOLLOWED STEPS 



The vertical bending moment is indeed the most important load effect when considering the hull girder 

collapse. However, in many types of ships, the combined effect of the vertical and the horizontal 

bending moments is important. It is well known the basic equations that relate the applied vertical and 

horizontal bending moments to the longitudinal stress are very simple and may be summarized; 
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or it may be expressed as a function of the total moment by: 
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Where ϕ  is the angle that the bending moment vector makes with the baseline, and xi and yi are the 

coordinates of the element i in the referential located in any point of the neutral axis. For given points 

of the cross section, this relation is constant until the yield stress of the material is reached in any point 

of the section. Once the cases mentioned above occur, the neutral axis moves away from its original 

position and thus the constancy of the relation may be broken. Similarly, the relation between the angle 

of the resultant bending moment vector ϕ  and the angle of the curvature vector θ  is constant in the 

linear elastic range. This relation may be express by: 
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When the curvature is increased the angle changes slightly towards the neutral axis, but this shift 

becomes very quick for curvatures near the buckling of the bottom and side plating, which corresponds 

to the maximum horizontal component of the bending moment. The moment vector moves its direction 



towards the neutral axis until the maximum of the vertical component, and even further that that, 

because of the unloading in the horizontal moment. This behavior is shown in Figure 1. 

 

 
 

 

     

 

Figure 1 Initial and at collapse position of the neutral axis under combined bending moment 

The most general case corresponds to that in which the ship is subjected to curvature in the x and y 

directions respectively denoted as Cx, Cy. The overall curvature C is related to these two components 

by: 
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Or 

θcos.CCx =    and     θsin.CC y =          (5) 

adopting the right-hand rule, where θ  is the angle between the neutral axis and the x-axis and is 

related to the components of the curvature by: 
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The strain at the centroid of an element i is iε  which depends on its position and on the hull curvature, 

as given by: 

 

ygixgii CxCy .. −=ε       (7) 



 

Where (xgi , ygi) are the coordinates of the centroid of the element i referred to the central point at each 

curvature. Once the state of strain in each element is determined, the corresponding average stress may 

be calculated according to the method described above, and consequently the components of the 

bending moment for a curvature C are given by: 
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∑= iigiy AxM ..σ  (9) 

 

Where iσ  represents the stress of element i at (xgi , ygi). Ai represents the cross sectional area of 

element i. 

This is the bending moment on the cross section after calculating properly the instantaneous position of 

the intersection of the neutral axis associated with each curvature and the centerline (called the center 

of force). The condition to determine the correct position of neutral axis is: 

 

0=∑ ii Aσ                                                                       (10) 

 

A trial and error process has to be used to estimate its position correctly. The total net load in the 

section, NL, or the error in the shift estimate ΔG should be less than or equal to a sufficiently low 

value (Gordo & Soares 1996). In this paper, the following equation is used. 
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Where i0σ  is the material yield stress of element i. 



 

Elastic-plastic collapse of the structural elements 

 

The equation describing the load-end shortening curve εσ − or the elastic-plastic collapse of 

structural elements composing the hull girder transverse section can be obtained from the following 

formula, valid for both positive (shortening) and negative (lengthening) strains. 

 

oσσ Φ=                                                                                                  (12) 

 

where,  is edge function, Φ oσ  is yield stress of element. 
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Beam – column buckling failure mode 

The equation describing the load-end shortening curve εσ −1CR  for the beam-column buckling of the 

stiffeners composing the hull girder transverse section can be obtained from the following formula: 
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where 1Cσ is critical stress in MPa, is net sectional area of a stiffener and b is spacing of 

stiffeners. 
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where  1Cσ  is based on the Johnson-Ostenfeld formulation accounting for inelastic effects on the 

column’s buckling. In equation (14) the second term computes the loss of efficiency of plate due to 

compression loading. Effective width, , based on the Frankland`s approach developed to the plate 

strength and given by (Ozguc et al 2006b, 2007b); 
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where, 1Eσ  is Euler column buckling stress, which is calculated as below, 
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where, is net moment of inertia of ordinary stiffeners with attached shell plating of width ,  

is net sectional area of stiffeners with attached shell plating of effective width , and is length of 

stiffened plate. 
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where, 
Et

b o
E

εσ
β =  is defined. 

Plate induced buckling failure mode 

The equation describing the load-end shortening curve εσ −2CR  for the plate buckling composing the 

hull girder transverse section can be obtained the following formula: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

Φ=
btA

tbA

S

ES
CR2σ                             (19) 

Flexural – torsional (tripping) buckling failure mode 

The equation describing the load-end shortening curve εσ −3CR  for the flexural – torsional (tripping) 

buckling of stiffeners composing the hull girder transverse can be obtained according to following 

formula: 
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where, 3Cσ is defined as critical stress. 
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where, 3Eσ  is Euler torsional buckling stress, defined as follows. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +=

P

tC

P

W
E I

I
Em

m
K

aI
EI

385.02
22

2

3
π

σ                                       (22) 

 



where,  is net sectional moment of inertia of the stiffener about its connection to the attached plating 

and is defined as follows. 
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where, is net polar moment of inertia of the stiffener about its connection to the attached plating, 

defined as follows. 
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where,  is St. Venant’s net moment of inertia of stiffener without attached plating, defined as 

follows: 
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where, m is number of half waves, may be taken equal to the integer number and  is torsional 

buckling of axially loaded stiffeners, calculated by following, which is shown in Table 1. 

CK
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where, is a spring stiffener of the attached plating and can be expressed as follows, 0C

b
EtC
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Table 1 Torsional buckling of axially loaded stiffeners – Number of m  half waves 

CK  40 <≤ CK  364 <≤ CK  14436 <≤ CK  

m  1  2 3 

 

where, CPσ is buckling stress of attached plating, which can be determined by following formula. 
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Web local buckling failure mode 

 

The equating describing the load-end shortening curve εσ −4CR  for the web local buckling of 

flanged stiffeners composing the hull girder transverse section can be obtained from the following 

formula. 
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where,  is effective height of the web, which can be determined by following formula: weh
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4   STRUCTURAL MODELING OF VESSEL 

Hull girder ultimate strength analysis of a single side skin bulk carrier under vertical bending is 

conducted through NEPTUNE computer code and adopted procedure is compared with seven different 

methods as well. Table 2 and Table 3 illustrate dimensions of the stiffeners and hull sectional 

properties, respectively while the cross-section is shown in Figure 2. 

 

 

Table 2 Dimensions of longitudinals of Bulk Carrier 

Stiffener 

No 
Dimensions (mm) Type 

Yield 

Stress 

(MPa) 

1 390x27 Flat-bar 392.0 

2 333x9+100x16 Tee-bar 352.8 

3 283x9+100x14 Tee-bar 352.8 

4 283x9+100x18 Tee-bar 352.8 



5 333x9+100x17 Tee-bar 352.8 

6 283x9+100x16 Tee-bar 352.8 

7 180x32.5x9.5 Bulb-bar 235.2 

8 283x9+100x17 Tee-bar 352.8 

9 333x9+100x18 Tee-bar 352.8 

10 333x9+100x19 Tee-bar 352.8 

11 383x9+100x17 Tee-bar 352.8 

12 383x10+100x18 Tee-bar 352.8 

12 383x10+100x21 Tee-bar 352.8 

14 300x27 Flat-bar 392.0 

 

Table 3 Hull sectional properties of the Bulk Carrier 

Items Vessel 

LBP (m) 285.0 

Breadth (m) 50.0 

Depth (m) 26.9 

Draft (m) 17.0 

Block coefficient 0.836 

Speed (knots) 15.5 

DWT  180000 

Cross-sectional area (m2) 5.582 

Neutral axis above base line (m) 11.024 

I (m4) 

   Vertical 

   Horizontal 

 

682.110 

1796.763 

Z (m3) 

   Deck 

   Bottom 

 

42.965 

61.872 

σY (MPa) 

   Deck 

   Bottom 

 

HT40 

HT32 

 

NOTES: I = Moment of inertia, Z = Section modulus 

       Hog. = Hogging case, and Sag. = Sagging case 

       σY = Yield stress of material 



 

5 CALCULATED RESULTS 

 

The calculated results of ultimate hull girder strength under only vertical bending are presented in 

Table 4. The items in the tables are as follows, 

 

yI : Moment of inertia with respect to horizontal neutral axis, in m4

Gz : Location of neutral axis above keel under vertical bending, in m 

PM : Fully plastic bending moment of cross-section, in MN.m 

YSM : Initial yield strength of deck, in MN.m 

YHM : Initial yield strength of bottom, in MN.m 

BSM : Local buckling strength of deck, in MN.m 

BHM : Local buckling strength of bottom, in MN.m 

USM : Ultimate bending moment of cross-section under sagging, in MN.m 

UHM : Ultimate bending moment of cross-section under hogging, in MN.m 

(1): With small initial deflection without welding residual stress, Case 1 

(2): With specified initial deflection and welding residual stress, Case 2 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Cross-section of single side skin bulk carrier (Yao et al., 2000) 

 

Table 4 Ultimate hull girder strength of bulk carrier under only vertical bending component carrier (Yao et al., 2000) 

Items Chen Cho Masaoka 
Rigo 

(2) 
Soares Yao 

Present 

Study 

Iy 687.87 693.44 689.80 702.48 679.31 682.50 682.11 

Zg 11.20 11.06 11.03 10.66 11.15 10.87 11.02 

MP 20.87 19.90 19.86 20.03 19.64 20.12 20.22 

MYS 15.82 15.64 15.53 15.45 15.41 15.21 15.19 

MYH 21.58 21.83 21.79 23.04 21.20 21.91 19.41 

MBS 13.19 13.05 12.95 12.89 12.85 12.79 12.06 

MBH 16.43 16.63 16.59 17.55 16.14 16.68 16.20 

MUS-1 15.35 14.40 16.82 - 13.72 15.67 14.79 

MUH- 18.71 19.55 18.90 - 17.43 17.78 17.83 



1

MUS-2 15.20 13.69 16.02 14.84 - 14.45 14.19 

MUH-

2

19.06 18.99 18.56 17.08 - 17.36 17.34 

MOMENT (x 1000 MN-m) 

 

 

The moment-curvature relationships obtained by different methods for Case (2) are plotted in Figure 3 

and Figure 4. 
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Figure 3 Moment curvature relationships for Bulk Carrier under only vertical bending component for Hogging 

condition 

 



 

Bulk Carrier (Case 2) in Sagging
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Figure 4 Moment curvature relationships for Bulk Carrier under only vertical bending component for Sagging 

condition 

 

The simplified procedure used in this work to predict the behavior of the hull girder under vertical 

bending seems to be quite accurate when the results are compared with those obtained by seven 

different approaches. 

 

It is seen that the scatter in the ultimate hull girder strength is not so large especially when the hull is 

subject to hogging bending moment. This may be partly because the bottom plate is relatively thick, 

and the hull buckling strength is nearly equal to the yield strength. On the other hand, the scatter of the 

ultimate hull girder strength in sagging is relatively large. This may be because different methods give 

somewhat different buckling strength of the deck, which has in general lighter scantling and is more 

sensitive to buckling than the bottom. 

The capacity beyond the ultimate strength is somewhat scattering compared to the ultimate hull girder 

strength significant reduction in the capacity is not observed with ISUM results (Masaoka and Chen 

methods), while it is seen in the Smith’s method using average stress – average strain relationships. 

The behavior strongly depends on the element characteristics, namely, whether or not the load 

shedding in the elements beyond their ultimate strength is correctly accounted for. Therefore, the 



presented ISUM elements seem to have been failed to simulate load-shedding behavior of element. 

However, recently more sophisticated elements are proposed and still under development. 

To simulate the load shedding (capacity reduction) beyond the ultimate hull girder strength, it is 

necessary to account the influences of the localization of yielding and deformation after the ultimate 

strength has been reached. 

The next point, which should be noticed, is the relationships between initial yielding strength and 

calculated hull girder ultimate strength. Even though, there are some exceptional cases, it can be said 

that, under sagging case, the initial yielding strength shows relatively good correlation with the hull 

girder ultimate and in general gives a little lower estimation value. On the other hand, under the 

hogging case, the initial yielding strength is sometimes higher than the fully plastic bending moment. 

This is the case when neutral axis of the cross section is located at lower part of the cross-section and 

stress based on elastic moment of inertia near the deck is higher than yield stress. For this fictitious 

stress distribution is,  is higher than . In this case, the initial buckling strength, , gives 

a better estimate of the hull girder ultimate strength than in general on the conservative side. 

YHM PM BHM

YHM

 

6 COLLAPSE ANALYSES UNDER COUPLED BENDING 

 

Ships have some particular behavioral problems subject to coupled vertical and horizontal bending 

moment due to interactions of their particular geometry. The maximum stresses are normally taken 

place at the conjunction between the deck and side under coupled moment. This is mainly because, the 

ultimate strength of stiffened plate the slenderness ratios are different from each others; thus different 

maximum axial carrying capacity is expected to occur. The ultimate carrying capacity of side structure 

is usually lower than that of the deck. As a result, the impact on the vertical and horizontal moment of 

these stresses – strain distributions near collapse is different since the side strength is more important 

for the horizontal bending while the deck strength is more important for the sagging moment. 

The angle of the resultant bending moment vector and the angle of the curvature vector is changing 

during the load process. If the direction of one of them is kept constant, the minimum carrying capacity 



of the section to sustain the bending moment is obtained at angles near but not equal to the horizontal 

bending. 

The hull girder ultimate strength of bulk carrier vessel is analyzed under combined vertical and 

horizontal bending moments. Interaction curves are obtained from a series of calculation for the hull 

bending with different angles of the curvature vector from hogging of vertical bending (the angle of the 

curvature vector θ = 0 degree) through horizontal bending (θ = 90 degree) to sagging of the vertical 

bending (θ = 180 degree). 
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Figure 5 Components of bending moment at θ = 20 degree in hogging condition 

 



In Figure 5 the results of bulk carrier are presented in the form of bending moment versus curvature 

diagram in terms of resultant, vertical and horizontal components. In the present case at an angle of 

curvature vector θ = 20 degree, a collapse of the section is evident in horizontal bending moment at a 

curvature of 0.106x10-3 1/m, while vertical bending moment has its maximum value at a curvature of 

0.201x10-3 1/m. This is because, the side panels near the bilge collapse first and this collapse is more 

important for the horizontal than for the vertical modulus due to the greater reduction in effective 

inertia moment about the vertical than about the horizontal axis. 

The collapse under the simultaneous action of vertical and horizontal bending moments has been 

calculated for the different combinations as reflected in the angle between the neutral axis and the 

horizontal axis. 

A series of diagrams is presented in Figure 6 to illustrate the behavior and the ultimate capacity of the 

analyzed bulk carrier vessels’ in the case of combined bending moment with respect to analyze of 

curvature vector. It can be seen that the horizontal component is equal to zero in case of the vertical 

bending as the cross section is symmetrical with respect to the vertical axis. Due to lack of symmetry 

with respect to the horizontal axis, a non-zero value of the vertical component appears. 
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Figure 6 The magnitude of the moment components with respect to angle of curvature vector 

 



The relationship between the angles of the curvature vector and the angle of the resultant bending 

moment vector for the present bulk carrier vessels is plotted in Figure 7. It is seen that it is different in 

general cases. The reason for the asymmetry of the curves is that the hull cross-section of the bulk 

carrier is not symmetrical about horizontal axis and the behavior of the structural members under 

compression is different from that under tension due to the nonlinearity caused by buckling. Therefore, 

the angle of the curvature vector and the angle of the resultant bending moment vector are not same in 

general cases. 
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Figure 7 Relationship between angle of resultant bending moment and angle of curvature vector 

 

For single skin bulk carrier vessel investigated in this study the following characteristics can be drawn 

through this investigation. 

• When the hull is under horizontal bending, that is, the angle of the curvature vector is θ = 90 

degree, the angle of resultant bending moment vector, ϕ , is not equal to 90 degree due to 

effect of non-linearity. When θ = 90 degree, there exist both horizontal and vertical bending 

moments on the hull cross-section. For the present bulk carrier, when θ = 90 degree, the 

horizontal bending moment is 22.931 GNm and vertical bending moment is 2.072 GNm. The 

angle of the resultant bending moment is ϕ  = 87.65 degree. 

• If the hull girder is subjected only to horizontal bending moment, that is, the angle of the 

resultant bending moment vector is ϕ  = 90 degree, then the angle of the curvature vector is 



not necessarily equal to 90 degree. The angle of the curvature vector is θ = 95.08 degree when 

ϕ  = 90 degree for the investigated bulk carrier vessel. 

• The maximum value of the horizontal bending moment occurs neither at θ = 90 degree nor at 

ϕ  = 90 degree. For Bulk Carrier, the maximum value of the horizontal bending moment takes 

place at θ = 71.58 degree and ϕ  = 83.18 degree. The maximum value of the horizontal 

bending moment is 23.56 GNm. At the moment the horizontal bending moment reaches its 

maximum, there exists a vertical bending moment on the hull cross-section, which is 2.823 

GNm. 

 

For the ultimate strength interaction relationship between vertical and horizontal bending moments, the 

following simple expression was proposed by Paik et al., (1996), regardless of initial imperfection 

level. 
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Where, is vertical bending moment, is vertical ultimate bending moment, is horizontal 

bending moment and is horizontal ultimate bending moment. 
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Another interaction equation was proposed by Gordo and Soares, (1997) based on the results for five 

tankers and six container ships, which is, 
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Even though interaction equations proposed by Gordo & Soares were not applied to bulk carriers, even 

so they have been used in this study. 



Ozguc et al., (2005b) also proposes interaction formulas for hogging and sagging cases separately and 

is presented as follows, 
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Where, 1.40 for hogging case and =a =a 1.10 for sagging case are proposed for bulk carrier vessels. 

Mansour et al., (1995) have proposed an empirical interaction equation based on the calculated results 

for one container ship, one tanker, and one cruiser, which is 
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The interactions between vertical and horizontal moments are illustrated in Figure 8 and Figure 9. It is 

seen that the ultimate vertical sagging moment is normally different than the ultimate vertical hogging 

moment when the ship is subjected to couple horizontal and vertical moment. 
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Figure 8 Interaction curves for bulk carrier under coupled bending moment for hogging condition, Rx and Ry 

indicate non-dimensional vertical and horizontal bending moments’ ratio 
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Figure 9 Interaction curves for bulk carrier under coupled bending moment for sagging condition 

 

7   CONCLUSIONS 

 

The simplified method based on the discrete hull cross-section model is a simple and effective method 

to estimate the ultimate longitudinal strength of ship hulls. A 180000 DWT capacity single side skin 

bulk carrier is analyzed by using a simplified method in this paper. Vertical bending moment is 

examined by seven different methods. The moment versus curvature curves and the values of the 

ultimate longitudinal moments at collapse states are determined for both hogging and sagging cases. 

Some scatters were observed among calculated results applying different methods. On the other hand, 

it was shown that a simplified method predicts the ultimate strength very accurately if the assumed 

collapse mode is the same as the actual one. The most crucial point for a simplified method is that it is 

able to simulate the occurrence of overall buckling as a stiffened plate including tripping of 

longitudinal stiffeners. 

The primary aim of the this research study was to investigate the characteristics of the ultimate strength 

for bulk carrier ship design and to compare simple strength interaction relationships proposed by 

researchers for hogging and sagging cases between the two load components that normally act on it, 

namely vertical and horizontal bending moment. 



It was shown that the ultimate hull strength interaction formulas used in this paper provided reasonably 

accurate fits to actual NEPTUNE output. Therefore, the results presented can be extremely useful for 

the trend analysis in ship design or in the reliability analysis of hull girder collapse.   

The evaluation of the ultimate strength using NEPTUNE is believed to be an adequate estimation of the 

ultimate load capacity of the ship. Further refinement using non-linear FE analysis requires 

considerably more engineering and computational effort and is not expected to yield substantially 

different results 
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