
OMAE-20-1043 Khalili 1 

  Different Bayesian Methods for Updating the Fatigue Crack Size 
Distribution in a Tubular Joint 

H. Khalili a,b*1, S. Oterkus b, N. Barltrop b, U. Bharadwaj c 
 

a NSIRC, Cambridge, United Kingdom 
b University of Strathclyde, Glasgow, United Kingdom 

c TWI Ltd, Cambridge, United Kingdom 
 
 

Abstract 

Offshore platforms are prone to fatigue damage. To evaluate the fatigue damage, these platforms are 

periodically inspected during the in-service lifetime. Inspection activities provide additional 

information, which includes detection and measurement of crack size. A Bayesian framework can be 

used to update the probability distribution of the uncertain parameters such as crack size. After updating 

the distribution of the crack size, it is possible to improve the estimation of joint reliability. The main 

purpose of this study is to present different methods of Bayesian inference to update the probability 

distribution of the crack size using the inspection results and to demonstrate how the results are 

different. Two different methods are presented; analytical (conjugate) and numerical methods. The 

advantages and shortcomings of each method are discussed. To compare the results of the analytical 

and numerical methods, two different situations are considered; updating the crack size distribution for 

a particular joint and updating the crack size distribution for several joints that have almost the same 

conditions. Although the proposed methodology can be applied to different kinds of structures, an 

example of tubular joints in a specific jacket platform is presented to demonstrate the proposed approach 

and to compare the results of two methods. 
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1. Introduction 

Jacket offshore platforms are one of the most common types of offshore structures that are 

utilized for oil and gas production in harsh environments. These platforms are usually 

constructed as truss frameworks in which tubular members are the structural elements. Fatigue 

damage in jacket platforms is most likely to occur at the welded tubular joints due to geometric 

discontinuity of the connections (which produces local tube wall bending and high-stress 

concentrations in these intersections) and the presence of small initial defects at the weld toe 

because of the welding process. 

During the structure’s lifetime, fatigue damage accumulates as the crack size increases. The 

accumulation of fatigue damage causes the probability of failure increases. To evaluate the 

state of fatigue damage, offshore platforms are periodically inspected. The information from 

inspection involves mainly the detection and measurement of crack size. After an inspection of 

a structure, the perception of the structure’s condition can be improved. In general, the 

Bayesian framework is used to update the probability distributions of the fatigue uncertainties 

such as parameters of fracture mechanics and the fatigue crack size in joints. Using the updated 

distribution of the crack size, it is possible to update the estimation of the joint probability of 

failure. 

Several studies have been performed to incorporate the inspection information to update the 

prior estimation of the fatigue uncertainties. Heredia and Montes (2004) developed a Bayesian 

framework for updating the probability distributions of the parameters of a fracture mechanics 

model and updating the crack size distribution in tubular joints by using the information from 

inspection reports. For this purpose, they defined an error model, which is a logarithmic 

difference between measured crack size during the inspection and crack size predicted by the 

fracture mechanics model. The error model was assumed to have a normal distribution with 

known mean and uncertain variance. In their model, a conjugate distribution for the error 
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variance was considered. Based on these assumptions, they presented a closed-form expression 

based on a Bayesian approach to update the probability distribution of crack size in a tubular 

joint [1].  

Karandikar et.al, (2012) performed a Bayesian inference using a random walk method to 

predict the remaining life of an aircraft fuselage panel subjected to repeated load cycles. They 

considered the Paris’ law parameters, as uncertain along with the initial crack size. They 

generated a large number of random samples from the joint distribution of Paris’ law 

parameters and initial crack size to produce the fatigue crack growth curve.  The probability 

that each sample path was the true crack growth curve was assumed as the inverse of the 

number of random samples. They considered a uniform distribution for the prior estimation. 

Their likelihood function was represented as a non-normalized normal distribution to describe 

how likely it was to present the fatigue crack growth curve accurately. Having obtained the 

prior and likelihood, they calculated the posterior distribution using a numerical method for the 

fatigue crack growth curve [2]. 

Moan and Song, (2000) investigated the effect of inspection on updating the fatigue 

reliability of both inspected and uninspected joints in the offshore platforms. They also 

presented the effect of repeated inspections on fatigue reliability. They showed that even with 

a poor inspection technique, a rational success can be expected if the inspection can be repeated 

several times. In their study, the reliability of a single joint through crack detected and 

measured at a specific time was updated based on the numerical method [3]. 

Peng et.al, (2015) proposed a general framework for probabilistic prognosis and uncertainty 

management under fatigue cyclic loading. They considered several sources of uncertainties in 

the Bayesian updating framework. They conducted fatigue tests by using pre-installed 

piezoelectric sensors to obtain experimental data. They assumed prior distributions for initial 
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crack size, stress intensity factor, and material property. They updated these distributions by 

using the laboratory test results [4]. 

In the above studies, the Bayesian updating has been performed through a numerical method 

and a likelihood function was defined to update the crack size distribution and the probability 

of failure. No comparison between the numerical and conjugate method has been carried out. 

The main purpose of this study is to present and compare different Bayesian methods for 

updating the probability distribution of the crack size and to explain the relative advantages of 

each method. Therefore, the capability of the conjugate method can be investigated by 

comparing its results with the numerical method. 

The Bayesian inference can be applied to any type of structure. However, the focus of this 

study is on tubular joints of the jacket platforms. The conjugate and numerical methods for 

updating the crack size distribution for a tubular joint are considered and the crack size 

distribution is updated when new information is available. Once the crack size distribution is 

updated, the probability of failure of the considered tubular joint is updated. 

In practice, there are few inspection results available for each tubular joint due to the 

expensive cost of the inspection. Hence, a new methodology is presented to update the crack 

size distribution for different locations that have almost the same conditions. Therefore, the 

inspection results for each joint can be used not only for updating the distribution of a specific 

joint but also it can be used to update the distribution of crack size for joints which have similar 

conditions. A demonstration example is presented and the posterior distribution of the crack 

size is obtained by using both analytical and numerical methods. 

It is noted that for redundant structures such as offshore jacket platforms, the reliability 

analysis at the system level is more applicable. However, this study focuses on the reliability 

estimation and updating at the component level by using Bayesian methods. 
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2. Fatigue Reliability Analysis 

In jacket platforms, fatigue cracks in tubular joints usually start at hot spot locations and 

gradually propagate through-thickness. For the safety of these structures, the fatigue damage 

of the tubular joints needs to be quantified. Due to the existence of several uncertainties in 

quantifying the fatigue damage process, a reliability approach is used. Reliability approaches 

are based on the calculation of failure probabilities. To calculate the failure probability, a limit 

state function needs to be defined based on the uncertain parameters involved in the fatigue 

process. 

Two general approaches are widely used for fatigue analysis: S-N curve approach and 

fracture mechanics (FM). One of the significant shortcomings of the S-N method is that it 

cannot consider the changes in crack size during fatigue life. On the other hand, the FM 

approach relates the increase of crack size to the number of fatigue stress cycles and it is used 

to quantify the fatigue crack growth process [5]. Therefore, in this study, fatigue reliability 

analysis is performed based on the FM approach. 

In the FM approach, the relationship between crack growth rate and stress intensity factor 

can be developed using the Paris law as [6], 

𝑑𝑎
𝑑𝑁 𝐶 ∆𝐾  (1) 

Where 𝑎 and 𝑁 represent the crack size and the number of load cycles, respectively. 

Moreover, 𝐶 and 𝑚 are the crack growth parameters, which depend on the material properties 

and loading conditions [7], [8]. In this equation, ∆𝐾 represents the stress intensity range which 

can be defined as [9], 

∆𝐾 𝑌 ∆𝑆 √𝜋𝑎 (2) 

Where ∆𝑆 and 𝑌 represent the stress range and the geometry function, respectively. In 

general, the geometry function depends on the crack geometry, structural geometry, and 
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loading [8]. By plugging Eq. (2) into Eq. (1), the relation between crack size and the number 

of load cycles can be obtained as: 

𝑑𝑎

𝑌√𝜋𝑎
𝐶 ∆𝑆 𝑑𝑁 (3) 

By assuming 𝑌 as a constant parameter [10] and by integrating Eq. (3) from the initial crack 

size (𝑎 ), to the crack size at time 𝑡 (𝑎 ), the crack size value at time 𝑡 can be obtained as: 

𝑎 𝑎   1
𝑚
2

𝑌 𝜋 𝐶 𝑁 ∆𝑆  (4) 

Due to the existence of several sea-state conditions, the platforms are exposed to several 

loading conditions. Therefore, the stress range in a platform is not constant and it varies for 

each sea state condition. Hence, the final crack size can be represented by using the expected 

stress range, as: 

𝑎 𝑎   1
𝑚
2

𝑌 𝜋 𝐶 𝑁 𝐸 ∆𝑆
 

 (5) 

After calculating the crack size based on the FM approach, the probability of failure can be 

calculated by using a limit state function. The limit state function represents the boundary 

between the safe and unsafe performance of a system or a component [11].  In this study, the 

crack size is treated as a failure criterion for the reliability calculations. It is assumed that failure 

occurs, as soon as the crack size is bigger than its critical value. Therefore, the fatigue limit 

state function is described as [10]: 

𝑔 𝑎 𝑎  (6) 

Where 𝑎  represents the critical crack size. In this study, the critical crack size is taken as 

the wall thickness of the tubular joint [12]. The probability of failure is defined as the 

probability of fatigue limit state function is less than zero: 

𝑃 𝑃 𝑔 0  (7) 
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As can be seen from Eq. (6) and Eq. (7), the probability of failure is a function of the final 

crack size; 𝑎 , which depends on the parameters such as initial crack size, crack growth 

parameters, geometry function, and the expected stress range (Eq. (5)). By plugging Eq. (5) 

into Eq. (6), the fatigue limit state function becomes: 

𝑔  𝑎   𝑎   1
𝑚
2

𝑌 𝜋 𝐶 𝑁 𝐸 ∆𝑆
 

 
 

  

(8) 

The reliability analysis depends on the choice of the uncertainties and their statistical 

distributions. Therefore, uncertainty modeling is very important for reliability calculations 

[11]. Several uncertainties exist in the fatigue life prediction of offshore structures such as: 

 Estimation of environmental parameters (e.g. wave height, wave period) 

 Calculation of hydrodynamic loads (e.g. Morison equation, drag and inertia coefficients) 

 Estimation of structural response (e.g. structural mass, stiffness) 

 Calculation of crack tip stress intensity factors (e.g. geometry function) 

 Estimation of crack growth parameters (e.g. C and m) 

 Estimation of the initial crack size 

To consider the first three items which are related to general loading and response of the 

structure, global modeling of the structure is required [9]. One approach for considering these 

uncertainties is the Response Surface Method (RSM) [13]. However, in this study, only one 

single variable for the stress range is considered to model these uncertainties. The last three 

items which represent the uncertainties involved in the analysis of crack growth at the tubular 

joint are considered in detail. 

The following uncertainties are considered in this paper: 

1- Initial crack size: 
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Initial crack size is an important variable that affects the fatigue life of a component. 

The initial crack size is not a well-known parameter and therefore there is uncertainty 

associated with the modeling of this parameter [14]. 

2- Crack growth parameter: 

Fatigue tests indicate a considerable amount of scatter in the obtained fatigue 

capacities, which is as a result of material properties. There is always uncertainty in 

the definition of reasonable distributions for the material parameters based on available 

laboratory test results [14]. 

3- Geometry function: 

Some empirical expressions for the geometry function are given by literature for 

simple welded joints. However, there is no analytical solution for the geometry 

function for complex geometries such as tubular joints and the experimental data 

shows a great deal of scatter for the geometry function [9]. To consider the uncertainty 

in the estimation of the geometry function, a stochastic variable (ɛ ) is defined and the 

geometry function is multiplied by this random variable. 

4- Stress range: 

The stress range spectrum can be obtained by assuming relationships between wave 

height spectrum and wave stress spectrum. The sea wave loads during the platform 

service life are divided into a series of static sea states and each sea state can be 

described through the wave spectrum. For offshore jacket structures, the wave loading 

is considered narrow banded and the stress ranges are Rayleigh distributed.  

To consider the uncertainties involved in the global analysis (e.g. environmental 

parameters, hydrodynamic loads, etc.), it is convenient to model the uncertainties with 

a single variable (𝜀 ). The obtained stress range from the global analysis is then 

multiplied by this random variable [14]. 
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Therefore, the limit state function can be written as: 

𝑔  𝑎   𝑎   1
𝑚
2

ɛ 𝑌 𝜋 𝐶 𝑁 ɛ 𝐸 ∆𝑆
 

 
 (9) 

Table 1 shows the distribution of the uncertain parameters considered in this study. 

Table 1- Characteristics of the uncertain parameters [N, mm] 

Variable Type Mean COV* Ref. 

Initial crack size, 𝑎  Exponential 0.11 1.0 [14] 

Crack growth parameter, 𝐶 Lognormal 1.8 x 10-12 0.63 [15] 

Stochastic parameter for the 
geometry function, ɛ  

Lognormal 1 0.1 [15] 

Stochastic parameter for the 
stress range, ɛ  

Lognormal 1 0.1 [11] 

* Coefficient of Variation 

 

Using Eq. (9) as the desirable limit state function and the introduced uncertainties in Table 

1, the probability of failure can be obtained using Monte-Carlo simulation. The reliability can 

be calculated by using the probability of failure as: 

𝑅 1 𝑃  (10)

3. Bayesian Framework 

When additional information such as experimental data and inspection results become 

available, the obtained information can be used to improve the previous estimate of uncertain 

parameters. The framework for updating the distribution of estimated parameters is called the 

Bayesian framework [16]. A Bayesian framework is a powerful tool for uncertainty 

management.  Bayesian inference provides a normative and formal method of belief updating 

when new information, becomes available [17]. 

The distributions that describe our knowledge before and after incorporating new data are 

called Prior and Posterior distributions, respectively. The posterior distribution of the uncertain 

parameter (𝜃), given new information (𝑥), can be obtained by using Bayes’ theorem as [18]: 
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𝑓 𝜃|𝑥
𝑓 𝑥|𝜃 𝑓 𝜃

𝑓 𝑥
 (11) 

where: 

 𝑓 𝜃|𝑥 : Posterior probability distribution, which is the probability of θ given x;  

 𝑓 𝑥|𝜃 : Likelihood function which is the probability of observing x (given θ); 

 𝑓 𝜃 : Prior probability distribution; 

 𝑓 𝑥 : Marginal probability of the new data. It is obtained by integrating out the 

uncertain parameter (𝜃) from the joint probability. Therefore, it is not dependent on 

the uncertain parameter, i.e.: 

𝑓 𝑥 𝑓 𝑥|𝜃 𝑓 𝜃 𝑑𝜃 (12) 

𝑓 𝑥  is considered as a normalization factor, i.e., a factor that makes the area under 

posterior distribution equal to one [18]. 

As can be seen from Eq. (11), in the Bayesian framework, the likelihood function and the 

prior distributions are the basis of the inference. In the Bayesian framework, the prior 

distribution represents our previous knowledge about the uncertain parameter before new 

information is available and the likelihood function, is defined to describe how likely is the 

new data to happen for a given uncertain parameter [19].  

In general, numerical integration is required to obtain the normalization constant and 

therefore to obtain the posterior distribution. However, in some cases, the posterior distribution 

can be obtained analytically.   

3.1 Analytical (Conjugate) Method 

A prior distribution is said to be conjugate to a class of likelihood function if the resulting 

posterior distribution from Eq. (11) is in the same probability distribution family as the prior 

distribution [18]. Conjugate distributions are useful because the prior and posterior 

distributions have the same form so the contribution of the new data through the updating 
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process can be easily quantified [18]. Since the posterior distribution is already known, the 

conjugate distributions provide tractable analytical results. Therefore, numerical integration to 

calculate Eq. (12) is not required. The use of conjugate priors allows obtaining the posterior 

distributions analytically. Commonly used conjugate distributions are shown in Table 2 [20]. 

Table 2- Common conjugate distributions 

Likelihood Uncertain parameter Prior Distribution  Posterior Distribution  

Binomial π Beta Beta 

Normal μ (σ2 known) Normal Normal 

Normal σ2 (μ known) Inverse Gamma Inverse Gamma 

Normal µ, σ2 Normal Inverse Gamma Normal Inverse Gamma 

Exponential λ Gamma Gamma 

 

Prior distributions are classified as either informative or non-informative. The informative 

prior distribution is used when there is enough information about the uncertain parameter 

before collecting data. In reliability problems, informative prior distributions can be 

constructed using physical theory, computational analysis, and expert opinions (e.g. see [19] 

and [21]). In assessing probability distributions based on expert opinion, there are many 

potential biases that must be minimized [19]. 

Informative priors contain substantial information about the possible values of the model 

parameter. On the other hand, a non-informative prior distribution contains little information 

about the parameter of interest. When no expert opinion is available, it is recommended that a 

non-informative prior distribution be used [22]. It should be noted that this is rarely the case in 

practice, and the usage of non-informative priors in such cases can lead to conservative results 

[23]. However, it can be used when the analyst wants to use a prior that has little impact on the 

posterior. Non-informative priors, in general, are intended to let the data dominate the posterior 

distribution. The most common non-informative prior for a single parameter inference is the 

Jeffreys prior. The functional form Jeffreys prior depends on the likelihood function [23]. 
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3.2 Numerical Method 

The main shortcoming of the conjugate method is that in some cases, the uncertainty 

parameter does not have an associated conjugate prior. For example, generic databases often 

express uncertainty in terms of a lognormal distribution, which does not have any conjugate 

priors with likelihood function [23]. To use conjugate methods, the likelihood function and 

prior distribution must have specific standard distributions. In some cases, likelihood functions 

do not have known distributions. Therefore, using the conjugate method does not provide 

precise posterior distributions. Moreover, the conjugate approach contains assumptions that 

can influence the results. This influence may be predominant especially when there is sparse 

data that conflicts with the prior distributions [23]. 

On the contrary, the numerical method provides a more general approach for predicting 

posterior distributions. The normalization factor in Eq. (12) can be calculated numerically. In 

numerical methods, prior and posterior distributions do not have to have the same functional 

forms. When the prior distribution is not conjugate, the posterior distribution cannot be 

presented in an analytical form (closed-form). Therefore, the posterior distribution is not a 

standard distribution. Sampling from a non-standard distribution makes the updating procedure 

computationally more expensive.   

4. Case Study - Bayesian Updating of Crack Size Distribution for a Single Location 

The first step for updating of the crack size distribution is to select an appropriate prior. The 

prior crack size distribution can be assumed based on theoretical considerations, expert 

opinions, past experiences, or data reported in the literature [2].  

In this study, a sampling method is used to obtain the prior distribution for crack sizes. Based 

on Eq. (5) the crack size at a specific time is a function of uncertain parameters such as initial 

crack size, crack growth parameter, geometry function, and the expected value of stress range. 

To obtain the prior distribution for crack size in the sampling method, a large number of 
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samples are generated from the probability density function of each uncertain parameter as 

provided in Table 1. A large number of samples is used to include all relevant combinations of 

these uncertain parameters. For each set of random samples (e.g. for the kth sample set: 𝑎 , 

𝐶 , ɛ , and ɛ ), the crack size (𝑎 ) is calculated based on Eq. (5). Here, the total number of 

simulations is chosen equal to 105. 

4.1 Analytical (Conjugate) Method 

Figure 1 shows the histogram of simulated crack size distributions based on 105 simulations 

after five years and the fitted exponential distribution. Since in the conjugate method, the prior 

distribution is restricted to the specific distributions, the fitted exponential distribution is used 

as an appropriate distribution for the crack size (before updating) with a probability density 

function as, 

𝑓 𝑎|𝜆 𝜆𝑒  (13)

Where 𝜆 is the rate parameter and it is assumed as an uncertain parameter. The mean value 

(µ) of the exponential distribution is, 

µ
1
𝜆

 (14)

As can be seen from Figure 1, the fitted exponential distribution overestimates the 

probability of smaller cracks, whereas it underestimates the probability of bigger cracks.  
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Figure 1- Histogram of the simulated cracks and fitted exponential distribution 

 
It was mentioned that 𝜆 is treated as an uncertain parameter which will be updated when new 

information is available. Based on Figure 1, one point estimation of λ is obtained as 𝜆
.

. 

It is noted that the value of  𝜆  depends on the sample size. In this study, the uncertain 

parameter is the rate of exponential distribution (𝜆), whereas the new information is the 

inspection results which contain the measurement of the crack size. Bayesian inference is 

employed to describe how the uncertainty in 𝜆 changes from the prior distribution to the 

posterior distribution by incorporating the new information. 

As can be seen from Table 2, for the exponential distribution with uncertain parameter (𝜆), 

the conjugate prior and posterior distributions for 𝜆 are Gamma distributions. The Gamma 

probability distribution function for 𝜆 is presented as: 

𝑓 𝜆 ∝ 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽  

𝑓 𝜆
𝛽

𝛤 𝛼
𝜆 𝑒  

(15) 

Where  𝛼  and 𝛽 are shape and rate parameters for the Gamma distribution, respectively. The 

expected value of the 𝜆 can be obtained as [23]: 

𝐸 𝜆
𝛼
β

 (16) 
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4.1.1 Prior Distribution 

In this study, Jeffreys non-informative prior will be used to describe the prior distribution. 

The Jeffreys non-informative prior for the exponential likelihood is a gamma distribution. In 

Jeffreys non-informative prior for the exponential distribution, both shape (𝛼 ) and rate 

parameters (𝛽 ) are selected close to zero [23]. Moreover, these parameters are selected in 

a way that the expected value of 𝜆 becomes equal to 𝜆 , i.e.: 

𝛼   0.001,      𝛽 𝛼 1
𝜆  (17) 

𝐸 𝜆   
𝛼
𝛽

𝜆
1

1.11
 (18) 

4.1.2 New Information (Inspection Results) 

It is assumed that ten observations 𝑁 10  of crack sizes (𝑎 , 𝑎 , … , 𝑎 ) are available.  

A normal distribution with a mean value of 2mm and a standard deviation of 0.2mm is assigned 

to the inspection results. It is also assumed that these inspections are independent of each other. 

4.1.3 Posterior Distribution 

Having provided new information, the distribution of the uncertain parameter can be updated 

by using the Bayesian framework. According to the Bayes’ theorem, the posterior is 

proportional to likelihood and prior: 

𝑓 𝜆|𝑎 ∝ 𝑓 𝑎|𝜆 𝑓 𝜆  

                             𝑓 𝜆|𝑎   ∝    𝜆𝑒   
𝛽

𝛤 𝛼
 𝜆  𝑒  

                    ∝ 𝜆 𝑒  

(19) 

Which is a gamma distribution with the following parameters: 

𝑓 𝜆|𝑎   ∝   𝐺𝑎𝑚𝑚𝑎 𝛼 1, 𝛽 𝑎  

𝛼   𝛼 1,    𝛽 𝛽 𝑎 
(20) 
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The distribution provided in Eq. (20) is obtained for the posterior distribution for the 

uncertain parameter when only one new data is available. When several observations 𝑁  of 

crack sizes are available, the parameters of gamma distribution can be obtained as [23]: 

𝛼  𝛼   𝑁  ,      𝛽 𝛽 ∑ 𝑎  (21) 

The updated expected value for 𝜆 can be obtained by using Eq. (18) as: 

𝐸 𝜆
𝛼
𝛽

 (22) 

Figure 2 shows the prior and posterior distributions for the uncertain parameter (λ). Here, a 

non-informative prior for the rate parameter is selected. In the non-informative prior, the rate 

parameter (𝜆) can have any value between 0, ∞ . Therefore, the probability distribution 

approaches to zero. By incorporating the new information, the posterior distribution will be 

updated based on Eq. (21). Therefore, the posterior distribution becomes deviated from the 

initial prior distribution as can be seen from Figure 2. 

 

Figure 2- Prior and posterior distributions for the uncertain parameter 

Based on Eq. (13), crack size distribution depends on the rate parameter. However, the rate 

parameter is an uncertain parameter which its distribution depends on 𝛼 and  𝛽. This is 

schematically shown in Figure 3. 



OMAE-20-1043 Khalili 17 

 

Figure 3- Dependency of the crack size on the distribution of the rate parameter  

After updating 𝜆, the crack size distribution is updated based on predictive distribution. 

Predictive distribution for the crack size can be obtained as [23]: 

𝑓 𝑎  
𝛼 𝛽

𝛽 𝑎
 (23) 

Figure 4 shows the crack size distributions before and after updating. As shown in the figure, 

the updated crack size distribution has a mean value of 1.97mm, which is close to the mean 

value of ten observations provided in Section 4.1.2. 

 
Figure 4- Crack size distributions before and after updating 
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4.2 Numerical Method 

In the numerical method, the posterior distribution is not a standard distribution and it cannot 

be presented in analytical form. Therefore, the normalization constant in Eq. (12) is calculated 

numerically. In this method, the posterior distribution is obtained by using Eq. (11).  

4.2.1 Prior Distribution 

As was mentioned a large number of crack sizes (105) is predicted by using random samples 

of uncertain parameters. In the numerical method, instead of fitting any distribution, the 

histogram of the simulated crack size is used as a prior. Figure 5 shows the histogram of the 

simulated data which is used as a prior distribution for the crack size. 

 

Figure 5- Prior crack size distribution for the numerical method 

4.2.2 Likelihood Function 

Due to the uncertainties in the fatigue phenomenon and crack size measurements, the crack 

size is not a certain parameter. The uncertainties involved in the fatigue process and also in the 

crack size measurements can be assumed based on expert’s beliefs. Therefore, the likelihood 

function is defined based on the expert’s belief to take into account the involved uncertainties. 

The likelihood function can be represented as a non-normalized normal distribution as [2]: 
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𝐿 exp
𝑎 𝑎

2𝜎
 (24) 

Where 𝑎  represents the measured crack size, 𝑎 is the crack size and 𝜎 is the standard 

deviation of crack size (due to measurement and model uncertainty). For example, if the 

measured crack size is obtained equal to 1.8mm, the actual crack size probably is between 1.4 

mm and 2.2 mm. In this case, it is unlikely that the actual crack size is greater than 3 mm.  

The value of 𝜎 in the likelihood function is estimated based on the expert’s judgment about 

the uncertainty in the fatigue model and the accuracy of non-destructive testing (NDT). Since 

the value of 𝜎 has a great effect on the likelihood function and posterior distribution, two 

different values for 𝜎 are considered to see the effect of the expert’s judgment on the posterior 

results. These cases are: 

 Case (I): An accurate model for the predicted crack size and perfect measurements 

In this case, it is assumed that the model can estimate the real crack size with reasonable 

accuracy. Moreover, the measurement is performed with a high-quality tool. Therefore, 

a small standard deviation of 0.5mm is considered for a likelihood function. 

 Case (II): A less accurate model for the predicted crack size and less accurate 

measurement 

In this case, it is assumed that the model can predict the real crack size with less accuracy. 

Moreover, the measured crack sizes are not very reliable. Therefore, a bigger standard 

deviation of 1mm for the likelihood function is assumed. 

Figure 6 shows the likelihood function for both cases. 
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Figure 6- Likelihood functions for both accurate and inaccurate models  

4.2.3 Posterior Distribution 

According to Bayes’ theorem, the posterior distribution is proportional to the prior 

distribution and likelihood function. It should be noted that, in the analytical method, the 

posterior distribution is updated only once by summing all the crack size information as shown 

in Eq. (21). However, in the numerical method, the posterior distribution needs to be updated 

for each observed crack size. Therefore, the probability distribution function of crack size is 

updated 𝑁  times sequentially by using Eq. (11). The obtained posterior is assumed as the 

prior distribution for the next updating process. Therefore, the updating procedure for the 

numerical method is computationally more expensive than the analytical method.  

To demonstrate how the crack size distribution is updated, the same observations in Section 

4.1.2 are considered. Figure 7 and Figure 8 show the posterior crack size distributions after the 

updating process for both likelihood cases described in Section 4.2.2. 
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Figure 7- Crack size distributions after several inspections for likelihood function-Case (I) 
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Figure 8- Crack size distributions after several inspections for likelihood function-Case (II) 

Figure 7 and Figure 8 illustrate that the posterior distributions are shifted towards the 

observations after almost five inspections, i.e. the observed data dominates the posterior 

distributions. Additionally, it is also observed that the expected value for the crack size is 

around 2.0 mm in both figures, which is close to the mean of the observed crack sizes. 

Therefore, if enough data is available, the posterior distribution is not sensitive to the prior 

selection. However, due to the high cost of underwater inspections, there may not be several 

inspections available for a specific joint. Most of the time, there is only one or two inspection 

results for each joint. As represented in Figure 7 and Figure 8, for the first and second updates, 

prior distribution has a great impact on the posterior distribution. Therefore, the prior 

distribution should be selected based on reasonable assumptions.   



OMAE-20-1043 Khalili 24 

4.3 Comparing the Results 

Figure 9 shows the posterior distributions of crack sizes for both conjugate and numerical 

methods. Although the obtained mean values for the methods are not substantially different 

(µ 1.97, µ 1.88 mm), the shape of the crack size distribution is different. 

The reason is that the posterior distribution is restricted to a specific distribution shape in the 

conjugate method. This is an important disadvantage of using the conjugate methods since the 

prior distributions have a great impact on the posterior distributions. Moreover, in the conjugate 

method, the simulated crack size is approximated with a fitted exponential distribution which 

is overestimating the probability of smaller cracks while underestimating the probability of 

bigger cracks. Therefore, when the prior distribution is not precise, the posterior distribution 

may not be accurate. It is important to note that conjugate priors involve making relatively 

strong assumptions. Indeed, conjugate priors minimize the impact of the data on the posterior. 

However, with a small amount of data, that is insufficient to define the distribution, the 

analytical method with its assumed posterior distribution shape can be employed. 

It is also observed that the posterior distribution shapes provided in Figure 9.b are very 

similar to the likelihood functions given in Figure 6. In fact, in the numerical method, the 

observed data dominates the posterior distributions. The effect of likelihood function on the 

posterior distribution can also be understood from Figure 9.b. The likelihood function for Case 

(II) which has a bigger uncertainty widens the posterior distribution. Using a larger uncertainty 

results in a bigger probability of failure.   
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(a) 

 
(b) 

Figure 9- Posterior crack size distributions, (a) Conjugate approach, (b) Numerical approach 

In the numerical method, the observed data dominates the posterior distribution shape, 

whereas, in conjugate methods, the prior distribution has a great effect on the posterior 

distribution and the effect of observed data is minimized. Since the numerical method allows 

us to incorporate the effect of the new data (inspection results) on the posterior distribution, 

numerical methods are preferred when sufficient data is available. However, the numerical 

method is computationally more expensive when several inspection results are available. 
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4.4 Updating the Reliability as a Function of Time 

As mentioned earlier, once the crack size distribution is updated, the probability of failure 

(reliability) of the considered tubular joint can be updated. After updating the crack size 

distribution, the component probability of failure can be updated by using the fatigue limit state 

and Monte Carlo simulations. Failure happens when the crack size reaches a critical size (𝑎 ), 

which is assumed equal to the thickness of the joint.  

Consider 𝑎 as the crack size at time 𝑡 and 𝑓 𝑎  as the corresponding probability distribution. 

If 𝑓 𝑎  denotes the crack size distribution before updating and 𝑓 𝑎  indicates the distribution 

after updating, the probability of failure before updating is estimated by: 

𝑃   𝑃 𝑎 𝑎 1 𝑓 𝑎 𝑑𝑎 (25) 

The probability of failure after updating is estimated by: 

𝑃   𝑃 𝑎 𝑎 1 𝑓 𝑎 𝑑𝑎 (26) 

 

5. Case Study - Bayesian Updating of Crack Size Distribution for Multiple Locations 

In real situations, there are few inspection results available for each tubular joint due to the 

expensive cost of the inspection. The purpose of this section is to update the crack size 

distribution for different locations that have almost the same conditions. It is assumed that these 

joints have identical configurations with the same material properties and they are subjected to 

almost the same stress range. When the inspection results for these similar joints are available, 

the posterior distribution for this group of joints can be obtained by using conjugate or 

numerical methods.  

5.1 Prior Distribution 

To assign a prior distribution for the crack size, a sampling method as explained in Section 

4 is used. Distributions of the uncertain parameters are presented in Table 1. However, since 
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the stress range is not the same at different locations, a bigger coefficient of variation is 

assumed for stress range as ɛ 0.25. 

The histogram of the simulated crack sizes and the fitted exponential distribution are 

assumed as the prior distribution for numerical and conjugate methods, respectively. The prior 

distributions shown in Figure 10 are obtained based on 105 simulations.  

 

Figure 10- Prior crack size distributions for multiple locations in conjugate and numerical methods 

5.2 New Information (Inspection Results) 

It is assumed that there are twenty tubular joints with similar conditions. To demonstrate the 

methodology, it is assumed that five independent inspection results are available for each 

tubular joint. Therefore, in total 100 inspection results 𝑁 100   are available. A normal 

distribution with a coefficient of variation of 0.2 is assumed for these five inspection results. It 

is also assumed that the mean value of each tubular joint is different. 

5.3 Posterior Distribution 

5.3.1 Conjugate Method 

Prior and posterior distributions for the uncertain parameter (𝜆) are represented by gamma 

distributions. After updating the distribution of λ, the crack size distribution is obtained by 
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using Eq. (23). Figure 11 shows the crack size distributions before and after incorporating the 

inspection results.  

 

Figure 11- Crack size distributions for multiple locations in the conjugate method 

5.3.2 Numerical Method 

As it was mentioned earlier in Section 4.2, the likelihood function is defined by Eq. (24). 

The standard deviation of crack size is assumed as 𝜎 = 0.8mm. Based on Bayes’ theorem, the 

posterior distribution is obtained by using the prior distribution and likelihood function as 

presented in Eq. (11). Moreover, as shown in Figure 9.b, the posterior distribution shape in the 

numerical method is similar to the likelihood function presented in Figure 6. It was assumed 

that the inspection results are available for twenty tubular joints. Figure 12 shows the crack 

size distributions for some joints before and after incorporating the inspection results.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 12- Crack size distributions for different locations, (a) joint #1, (b) joint #2, (c) joint #8 and 

(d) joint #10 

In Figure 12 the blue line is the prior distribution for all similar joints in the platform and it 

is assumed similar for all the joints. However, for each joint, the specific inspection data for 

that joint is used. Therefore, the posterior distribution for each joint is different as presented by 

red dashed lines. 

By combining all posterior distributions for each location and normalizing the area below 

the combined distribution, a posterior distribution for all locations can be obtained. Figure 13 

illustrates the prior and posterior crack size distributions for all tubular joints. 

 

Figure 13- Crack size distributions for multiple locations in the numerical method 
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5.4 Comparing the Results 

Figure 14 shows the posterior crack size distributions for a group of twenty similar joints 

based on the conjugate and numerical methods. It is observed that, if the results of several 

locations are combined, the posterior distribution in the numerical method approaches to the 

conjugate posterior distribution. Note that the posterior for each location is similar to normal 

distribution. It is also found that both numerical and conjugate methods result in similar 

distribution. Therefore, posterior distribution in the conjugate method might be preferred since 

it is much easier and less time-consuming for multiple locations. 

 

Figure 14- Posterior crack size distributions for multiple locations in both methods 

6. Conclusion 

In this study, two different methods for updating the crack size distribution are introduced; 

analytical method and numerical method. The main advantage of using the conjugate method 

is having known posterior distributions. The posterior can be easily obtained when new 

information is available. However, conjugate priors contain substantial assumptions. In fact, in 

the conjugate method, priors have a strong influence on the posterior compared to the influence 

of the data. Conjugate methods could be useful for cases where the observations are insufficient 

to estimate the distribution shapes.  
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A numerical method is a general approach for Bayesian updating which is used to obtain the 

posterior by multiplying likelihood function and prior distribution directly. By using the 

numerical method, data dominates the posterior distribution. Hence, the numerical method is 

preferred when sufficient data is available. However, the numerical method is computationally 

expensive.  

Since, in reality, there are only one or two inspections for each joint, a new method is 

presented to combine the inspection results of the similar joints to update the distribution of 

these similar joints. In fact, by using this method, the inspection results can be used to update 

other joint distribution and it tries to maximize the benefit of each inspection. When the 

inspection data is available for several joints, the results of the numerical method approach 

those of the conjugate method. Since the posterior distribution in the conjugate method can be 

obtained easier than the numerical method, the conjugate method might be preferred in this 

case.  
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