9,752 research outputs found

    Numerical studies of identification in nonlinear distributed parameter systems

    Get PDF
    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed

    Field Theory as Free Fall

    Get PDF
    It is shown that the classical field equations pertaining to gravity coupled to other bosonic fields are equivalent to a single geodesic equation, describing the free fall of a point particle in superspace. Some implications for quantum gravity are discussed.Comment: 18 pages, plain late

    Quantum Moduli Spaces of N=1N=1 String Theories

    Get PDF
    Generically, string models with N=1N=1 supersymmetry are not expected to have moduli beyond perturbation theory; stringy non-perturbative effects as well as low energy field-theoretic phenomena such as gluino condensation will lift any flat directions. In this note, we describe models where some subspace of the moduli space survives non-perturbatively. Discrete RR symmetries forbid any inherently stringy effects, and dynamical considerations control the field-theoretic effects. The surviving subspace is a space of high symmetry; the system is attracted to this subspace by a potential which we compute. Models of this type may be useful for considerations of duality and raise troubling cosmological questions about string theory. Our considerations also suggest a mechanism for fixing the expectation value of the dilaton.Comment: 26 pages; uses harvmac. Footnote re fixing dilaton adde

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections

    Spherically symmetric false vacuum: no-go theorems and global structure

    Get PDF
    We enumerate all possible types of spacetime causal structures that can appear in static, spherically symmetric configurations of a self-gravitating, real, nonlinear, minimally coupled scalar field \phi in general relativity, with an arbitrary potential V(\phi), not necessarily positive-definite. It is shown that a variable scalar field adds nothing to the list of possible structures with a constant \phi field, namely, Minkowski (or AdS), Schwarzschild, de Sitter and Schwarzschild - de Sitter. It follows, in particular, that, whatever is V(\phi), this theory does not admit regular black holes with flat or AdS asymptotics. It is concluded that the only possible globally regular, asymptotically flat solutions are solitons with a regular center, without horizons and with at least partly negative potentials V(\phi). Extension of the results to more general field models is discussed.Comment: Latex2e, 4 pages, 1 bezier figur

    Vacuum Bubble in an Inhomogeneous Cosmology

    Full text link
    We study the propagation of bubbles of new vacuum in a radially inhomogeneous Lemaitre-Tolman-Bondi background that includes a cosmological constant. This exemplifies the classical evolution of a tunneling bubble through a metastable state with curvature inhomogeneities, and will be relevant in the context of the Landscape. We demand that the matter profile in the LTB background satisfy the weak energy condition. For sample profiles that satisfy this restriction, we find that the evolution of the bubble (in terms of the physically relevant coordinates intrinsic to the shell) is largely unaffected by the prsence of local inhomogeneities. Our setup should also be a useful toy model for capturing the effects of ambient inhomogeneities on an inflating region.Comment: 31 pages, 21(!) figures, v2: minor changes, figures re-sized (might require zoom on some systems), references adde

    Spontaneous Flavor and Parity Breaking with Wilson Fermions

    Get PDF
    We discuss the phase diagram of Wilson fermions in the m0m_0--g2g^2 plane for two-flavor QCD. We argue that, as originally suggested by Aoki, there is a phase in which flavor and parity are spontaneously broken. Recent numerical results on the spectrum of the overlap Hamiltonian have been interpreted as evidence against Aoki's conjecture. We show that they are in fact consistent with the presence of a flavor-parity broken ``Aoki phase''. We also show how, as the continuum limit is approached, one can study the lattice theory using the continuum chiral Lagrangian supplemented by additional terms proportional to powers of the lattice spacing. We find that there are two possible phase structures at non-zero lattice spacing: (1) there is an Aoki phase of width Δm0∌a3\Delta m_0 \sim a^3 with two massless Goldstone pions; (2) there is no symmetry breaking, and all three pions have an equal non-vanishing mass of order aa. Present numerical evidence suggests that the former option is realized for Wilson fermions. Our analysis then predicts the form of the pion masses and the flavor-parity breaking condensate within the Aoki phase. Our analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment

    Black Hole Remnants and the Information Puzzle

    Full text link
    Magnetically charged dilatonic black holes have a perturbatively infinite ground state degeneracy associated with an infinite volume throat region of the geometry. A simple argument based on causality is given that these states do not have a description as ordinary massive particles in a low-energy effective field theory. Pair production of magnetic black holes in a weak magnetic field is estimated in a weakly-coupled semiclassical expansion about an instanton and found to be finite, despite the infinite degeneracy of states. This suggests that these states may store the information apparently lost in black hole scattering processes.Comment: 16 pages, revision has 5 figures uuencode

    Group and individual variability in speech production networks during delayed auditory feedback

    Get PDF
    Altering reafferent sensory information can have a profound effect on motor output. Introducing a short delay [delayed auditory feedback (DAF)] during speech production results in modulations of voice and loudness, and produces a range of speech dysfluencies. The ability of speakers to resist the effects of delayed feedback is variable yet it is unclear what neural processes underlie differences in susceptibility to DAF. Here, susceptibility to DAF is investigated by looking at the neural basis of within and between subject changes in speech fluency under 50 and 200 ms delay conditions. Using functional magnetic resonance imaging, networks involved in producing speech under two levels of DAF were identified, lying largely within networks active during normal speech production. Independent of condition, fluency ratings were associated with midbrain activity corresponding to periaqueductal grey matter. Across subject variability in ability to produce normal sounding speech under a 200 ms delay was associated with activity in ventral sensorimotor cortices, whereas ability to produce normal sounding speech under a 50 ms delay was associated with left inferior frontal gyrus activity. These data indicate whilst overlapping cortical mechanisms are engaged for speaking under different delay conditions, susceptibility to different temporal delays in speech feedback may involve different process
    • 

    corecore