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Abstract. An abstract approximation framework and convergence theory for the identification of first
and second order nonlinear distributed parameter systems developed previously by the authors and
reported on in datail elrewhere are summarized and discursed. The theory is based upon results for
systems whose dynamics can be described by monotone operators in Hilbert space and an abstract
approximation theorem for the resulting nonlinear evolution aystemn. The application of the theory
together with niumerical evidence demonstrating the faasibility of the general approach are discussed in
the context of the identification of a first order quasi-linear parabolic model for one dimensional heat
conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e. damping) in
a second order one dimenaional wave equatinn. Computational and implementational considerations, in
particular, with regard to supercomputing, are addressed,
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1. INTRODUCTION

In this paper we report on the results of our efforta in the area of approximation for the identi-
fication of nonlinear distributed parameter systems. The central focus of the present paper is our
essential features of the underlying theory. ‘The theoretical basis (i.e. convergence analysis) for the
computational results to be presented below has been treated in detail in two of our earlier papers,
[3] and [5]. In [3] and [5] we developed nonlinear analogs of the general abstract approximation
framework for the identification of linear systems given by Banks and Ito in [2]. Inverse problems for
first order nonlinear evolution equations are handled in [3], while [5] is concerned with second order
systems. We note that in another earlier paper, [4], we have developed an approxination framework
for the estimation of parameters in nonautonomous nonlinear distributed systems. Although the
general approach taken in {4} differs somewhat from the ideas in [3] and [5], and froin those to be
discussed here, the resulls presented there are certainly related, and at present, remain our only
means of dealing with either linear or nonlinear nonautonomous systems.

In the next section we briefly review some abstract functional analytic existence, uniqueness,
regularity, and approximation results for nonlinear evolution equations in Banach spaces. In section 3
we consider first order systems, define the class of inverse problems and evolution systems with which
we shall be dealing and sketch the relevant approximation and convergence theory. We then consider
an example involving a quasi-linear model for heat conduction and present the results (inclusing those
aspects related to supercomputing) of our computational study and numerical investigations. In the
fourth section we treat inverse problems for second order systems. In particular we consider the
estimation or identification of nonlinear dainping ot dissipalion mechanisins in distributed parameter
models for mechanical systems. A brief fifth section contains some concluding remarks.

2. NONLINFAR EVOLUTION EQUATIONS IN BANACH
SPACES-EXISTENCE, UNIQUENESS, AND APPROXIMATION RESULTS

We consider quasi-autonomous, in general nonlinear, initial value problemns of the form

(2.1) #(1) + Az(1) 3 f(1), 0<t<T,

(2.2) z(0) = z°

set in a Banach space X with norm |-|x. In (2.1), (2.2) above we assume that T > 0,z° € Dom(A) =
{r eX : Az # ¢},f € Li(0,T; X), and that for some w € R the operator A 4+ wl : X — 2X is m-
accretive. In other words, that for some w € R we have (i) |z) —z2|x < [(14dw)(z1—z3) + My —
v2)|x for every zy,zy € Dom(A), y1 € Azxy,y2 € Azy, and XA > 0, and (ii) R(I + MA + wl)) =
UnDom(A) (I + AM(A+wl))z = X for some A > 0. We note that A + wl m-accretive implies that for
cach A > 0 the resolvent of A+ wl at A\, J(A\; A+ wl): X — X, asingle valued, everywhere defined,
nonexpansive, nonlinear operator on X, can be defined by J(\; A+ wl) = (I + AM(A +wl))~ L.

A nonlinear evolution system on a subset 2 C X is a two parameter family of nonlinear operators,
{U(t,s):0<s<t<T}, on Qsatislying U(t,8)p € QU(s,s)p =pand U(t,s)U(s,r)p = U(t,r)p
for every p € 2 and 0 < r < 8 <t < T with the mapping (s,t) — U(t, s)y continuous from the
triangle A = {(s,t) : 0 < s <t < T} C R? into X for each ¢ £ . A strongly continuous function
z : [0,T] — X is said to be a strong solution to the initial value problem (2.1), (2.2) if z(0) = z°,
it is absolutely continuous on compact subintervals of (0,T), differentiable alinost everywhere, and
satisfies f(t) — #(t) € Az(t) for almost every t £ (0,7).

It can be shown (see 7], (9], and [3]) that under the assumptions on A, f, and z° made ahove,
a unique nonlinear evolution system {U(t,s) : 0 < s <t < T}, on Dom(A) with the following
properties can be constructed.

(i) UL, s)p —~U(t,s)¥|x < e“t=p — ¢|x, for all p,¢p € Dom(A) and 0< s <t < T;
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(i) [U(s+1,8)p—U(r+t,r)elx <2[eC=D|f(r+5)— f(r+r)|xdr, for all ¢ € Dom(A) and
0

allt > Osuch that s+ ¢, r+t < T}
(iii) If the initial value problem (2.1), (2.3) has a strong solution z, then z(t) = U(t, s)z(s), for
0<s<t<T;
The strongly continuous function z given by z(t) = U(¢,0)z°,¢ ¢ [0, T], is referred to as the unique
mild, generalized, or integral (see [6]) solution to (2.1), (2.2). It is immediately clear from (iii) above
that when the initial value problem (2.1), (2.2) admits a strong solution, it and the mild solution
coincide.

The abstract approximation result which will play a fundamental role in the discussions to follow,
is given in Theorem 2.1 below. The theorem we state here is similar in spirit to other related
approximation results for nonlinear evolution equations - in particular, those that can be found in
[8] and [10]. The proof of Theorem 2.1 is given in [3]. In the statement of Theorem 2.1 and elsewhere,
for sets S,,,n = 0,1, 2, ... we use the notation nlin;o Sp D Sp to mean that given any sy € Sy, there

exists s, € Sp,n = 1,2,... for which lim s, = sp.
n—o

THEOREM 2.1. Foreachn ¢ Z% = {1,2,3,...} let X, be a closed linear subspace of X, let f, €
Ly (0,T; Xy),and let A, : X, — 2%~ be an operator on X, with A, +wI m-accretive. Suppose that
there exists a function g € L1(0,T) for which |f.(t)|x < ¢(t), and that lim Dom(A,) D Dom(A).

Suppose further that
(l) nll‘ngo fn(t) = f(t), ae. te(0,T),
and that
(i) nlinolo J(A;Ap+wl)p, = J(A; A4+wl)p for each p € X whenever ¢, € X, with nlingo ®n =,
for some A > 0.

Then if {Un(t,s) : 0 < s <t < T} is the evolution system on Dom(A,,) generated by A, and f,, we
have

nlirgo Un(t,8)on = U(t,s)p
uniformly in s and t for (s,t) € A, for each ¢ € Dom(A) and ¢, € Dom(A,) with lin;o Pn = .
13—t

3. THE IDENTIFICATION OF FIRST ORDER SYSTEMS WITH DYNAMICS GOVERNED
BY MONOTONE OPERATORS ON HILBERT SPACE
Let H be a real Hilbert space with inner product denoted by < -,- > and corresponding norm
|- ], and let V be a real reflexive Banach space with norm || - ||. We shall assume that V is densely
and continuously embedded in H. It follows therefore that V <+ H <+ V* and that there exists a
constant p > 0 for which ||¢]|l« < plel|, for all ¢ € H and |p] < pl|l], for all ¢ € V where |} - ||«
denotes the usual uniform operator norm on V*. We shall also use < -,- > to denote the natural
extension of the H inner product to the duality pairing between V and V*. Let @ and Z be metric
spaces and let Q be a fixed, nonempty, sequentially compact subset of Q.
For each g € Q let A(q) : V — V* be a single valued, everywhere defined, hemicontinuous (see
[6]), in general nonlinear, operator from V into V* satisfying the following conditions.

(A) (Continuity): For each ¢ € V, the map ¢ — A(g)y is continuous from Q C Q into V*.
(B) (Equi-V-montonicity): There exist constants w € R and @ > 0, both independent of ¢ ¢ Q,
for which

< Aq)p — A, —¥ > +wlo— ¥ > allp - 9|,
for every p,¢ ¢ V.



(C) (Equi-boundedness): There exists a constant 8 > 0, independent of ¢ ¢ @, for which

lI2()ell. < Blell + 1),
for every ¢ € V.

For each ¢ ¢ @ define the operator A(q) : Dom(A(g)) C H — H to be the restriction of the
operator A(q) to the set Dom(A(q)) = {¢ € V : A(q)p € H}. It can be shown (see [3]) that A(g)
is densely defined (i.e. that Dom(A(q)) = H) and that A(g) + w/I is m-accretive. Let T > 0 and for
each ¢ € Q let f(- ;q) € Li(0,T;H) and let u%(q) ¢ H. We assume that the mapping ¢ — u°(q)
is continuous from @ C Q into H and that the mapping ¢ — f(%;¢) is continuous from @ C @ into
H for almost every t € (0,T). Also, for every z ¢ Z, let u — i)(u;z) be a continuous map from
C(0,T;H) into R*. We consider the abstract parameter identification problem given by:

(ID)  Given observations z € Z, determine parameters § ¢ Q which minimize the functional

®(q) = ®(u(g); 2)

where for each ¢ ¢ Q u(q) = u(- ;q) is the mild solution to the initial value problem in H
given by

(3.1) u(t) + A(Qu(t) = f(t;9), 0<t <T

(3.2) u(0) = u’(q).

Recalling the discussion in section 2 and our remarks above, it is clear that for each ¢ ¢ Q, A(g)
and f(- ;q) generate a nonlinear evolution system {U(t,s;9) : 0 < s <t < T} on H with the mild
solution to the initial value problem (3.1), (3.2) given by

u(t;q) = U(t,0;9)u’(q), 0 <t < T.

We develop an abstract Galerkin based approximation theory for problem (ID). For each n =
1,2,... let H, be a finite dimensional subspace of H with H,, C V for alln. We let P, : H — H,
denote the orthogonal projection of H onto H,, with respect to the inner product < -,- > and we
make the standing assumption

(D) lim ||P,p = ¢|| =0, for each p € V.
n~-—-+oo

It is clear that assumption (D) together with the dense and continuous embedding of V in H yield
that the P, tend strongly to the identity on H as well, as n — oo.

For each ¢ ¢ Q we define the Galerkin approximation An(¢),n = 1,2, ..., to A(q) in the usual man-
ner. That is, for ¢, € Hy we set An(q)¥n = ¥n where ¥, is the unique element in H,, (guaranteed to
exist by the Riesz Representation Theorem applied to H,) satisfying < %(q)¢n,Xn >=< ¥n,Xn >,
Xn € Hn. Weset fo(- 59) = Paf(- ;9) € L1(0,T; H,) and ul(q) = P,u%(q) € H,. With these def-
initions, it is not difficult to argue that for each n = 1,2,... and each ¢ € Q, A,(q) and f,(- ;q)
generate a nonlinear evolution system, {U,(t,s;¢q) : 0 < s <t < T} on H,. Thus we consider the
sequence of approximating identification problems given by:

(ID,) Determine parameters §,, € Q which minimize

®.(g) = B(un(q); 2)

where for each ¢ £ Q,u,(g) = un(- ;¢) is the mild solution to the initial value problem in
H, given by



(33) iln(t) + An(‘l)un(t) - f(t;Q)) 0<tLT

(3.4) un(0) = up(q)-

The mild solution, u,(gq), to (3.3), (3.4) is given by u,(t;¢) = Un(t,0;q)ul(q), 0 <t < T.

We may summarize the existence and convergence theory for solutions to problem (ID,) given
in [3] as follows. Let {gn}22., be a sequence in Q with lim ¢, = g0 € Q. Assumption (D) and the

n—oo
continuity of the map ¢ — u®(q) imply lim u2(g,) = u®°(qo) in H. Similarly we have lim fn(t;qn) =
n-—oQ n—oo
f(t;90) in H for almost every t € (0,T) with [fn(- ;¢n)| dominated by an L; function which is inde-
pendent of n. Assumption (D) also implies that nlirgl° Dom(An(gn)) = nlingo H, D H = Dom(A(go)),
and that for each A > 0, lim J(X; An(gn) + wl)pn = J(X; A(qo) + wl)e in H whenever ¢, € H,
1=+ 00
with lim ¢, = ¢ ¢ H. Thus, Theorem 2.1 yields
n-——+oo0

(35) Jim_un(ga) = lim Un(-,0;9n)un(gn) = U, 0590)u°(g0) = #(g0),

in C(0,T;H). Similar arguments can be used to demonstrate that if {g, }33_; C Q with lim ¢, = qq,
m—o0
then

(3.6) Jim un(gm) = lim Un(:,05¢m)up(gm) = Un(-0; 90)up (20) = un(g0)
in C(0,T;H) for each n = 1,2,... )
The compactness of Q, the continuity assumption on ®, and (3.6) are sufficient to conclude that

for each n = 1,2,..., problem (ID,) admits a solution §, ¢ Q. Since {§,}3%, C @ and Q compact,
a convergent subsequence, {gn;}32,, may be extracted from {ga}7%;. If § = lim §,;, then for each
j—oo

g € @ (3.5) implies
®(q) = &’(u((j), z) = &)(Jl_l'ngo Unj (‘inj); z)

= JI_EEO Q(“n;(q—n,'); z) = ,l.lf?o (I)nj (qnj)

(3.7) < J,E{go Pn;(q) = jl_ifg, ®(un,;(9); 2)
= &(lim un,(q);2) = B(u(g); 2)
= &(q)

and consequently that § is a solution to problem (ID).

When the admissible parameter set Q is also infinite dimensional (when, for example, as is fre-
quently the case, the unknown parameters to be identified are elements in a function space) it must
be discretized as well. When this is in fact the case, the theory presented above requires the fol-
lowing modification. For each m = 1,2,... let I : Q@ C @ — Q be a continuous map with range
Q™ = I'(Q) in a finite dimensional space and with the property that "}1_13100 I™(g) = ¢, uniformly on

Q. We consider the doubly indexed sequence of approximating identification problems (I D7') where
for each n and m (D7) is defined to be problem (ID,) with Q replaced by Q™. It can be shown
that each of these problems admits a solution ¢7* ¢ Q™, and that the sequence {g7'} will have a
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Q-convergent subsequence, {@ny’}, with limit in Q. If .}:im gny) = q € Q, then § can be shown to be
jk—oco

a solution to problem (ID). The problems (ID}*) involve the minimization of functionals over com-
pact subsets of Euclidean space subject to finite dimensional state space constraints. Consequently
they may be solved using standard computational techniques.

We illustrate the application of our theory with an example involving the identification of a quasi-
linear model for one dimensional heat flow (see [13], [14]). We consider the quasi-linear parabolic
partial differential equation

u Ou Ou
%—t—(t,z) - —a%- {q(b;-(t,x))a—z(t,z)} = f(t,z), t>00<z<1,

toget:her with the Dirichlet boundary conditions

u{t,0) =0, u(t,1)=0,t>0
and initial data

u(0,z) = u’(z), 0<z< 1

We assume that u® ¢ L2(0,1), f € L1(0,T; L2(0,1)), and that ¢ ¢ Cp(R), the space consisting of all
bounded continuous functions defined on the entire real line and endowed with the usual supremum
metric which we shall denote by d(-,-). We assume further that q satisfies

(3.8) (2(8)8 — g(m)m)(@ — 1) > |6 — 9%, 6,7 ¢ R

for some a > 0. (We note that if q is differentiable on R, then the Mean Value Theorem implies
that the condition ¢'(8)0 +¢(f) > « > 0, 8 ¢ R, is sufficient to conclude that condition (3.8) holds.)

To apply our framework we set H = L,(0,1) endowed with the standard inner product and norm,
1

1 5
and set V = H}(0,1) with norm || - || given by ||¢|| = <f|D¢(:c)|2d:c)) . In this case we have
0

V* = H~1(0,1) and V < H — V* with the embeddings dense and continuous (u = 1). We take
Q = Cp(R),Z = C(0,T; L5(0,1)), and for given fixed values of ag,po, 00,00 > 0 we take Q to be
the Q-closure of the set

{g € CB(R): q(8) = g(-9), lg(8)] < po, lg'(B)] < oo, ¢'(6)0+4q(6) > ao, for 6 € R, ¢(f) =
constant for |8] > 0, for some numbers 0, satisfying 0 < 8, < 6o}.

A straight forward application of the Arzela-Ascoli Theorem reveals that Q is a sequentially compact
subset of Cg(R). If for each g ¢ Q we define the operator A(q) : V — V* by

1
<AQ)p, ¥ >= / o(Dp(2)) De(z) Db(z)dz, % ¢ V,

then it is not difficult to show that assumptions (A), (B), and (C) are satisfied. Let {t;};_, with
0<t; <ty---<t, <T be given, and for each z ¢ Z define the least squares performance index
®:C(0,T; L2(0,1)) — R* by

(3.9) d(v;2) = Z /|v(t,-,:z:) — z(t;, z)2dz.
i=1
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We consider the parameter estimation problem (ID) with Q,<i>,Q1(q), f, and u® as defined above.
For each n = 1,2,... let H, = span{q&{,};‘;ll where ¢/ is the j-th linear B-spline on the interval

[0,1] defined with respect to the uniform mesh {0,1/n,2/n,...,1}. That is

0 0<zr< it

ne—j+1 -7;—1 <z< -’,;

j+1l—-nz -7'; <z< 1—;'—:3-

0 Jt—l <zr<l,

(3.10) $i(z) =

j=12,---,n—1. Clearly H, CV = H}(0,1),n = 1,2,... Let P, : H — H, denote the orthogonal

projection of L,(0,1) onto H, with respect to the usual Lj-inner product. Standard approximation

results for interpolatory splines (see [15]) can be used to argue that assumption (D) is satisfied.
We discretize the admissible parameter set as follows. For m ¢ Zt and ¢ € Q set

m

(I™q)(6) = D q(j8/m)¥7(101;65), 0 ¢ R

=0

where the 1/)]"‘( ;6g),3 = 0,1,2,...,m are the standard linear B-splines on the interval [0,8,] defined
with respect to the uniform mesh {0,6,/m,28,/m, ...,6,} and then extended to a continuous function
on the entire positive real line via ¢7*(8;6,) = ¥]*(6,;6,), 8 > 6,. Using the Peano Kernel Theorem
(see [12]) it can be argued that

16,
doo (I™g,q) = sup|I™q — q| S——-cfo, q¢Q,

and consequently that lim I™g¢ = ¢ in Cp(R), uniformly in q for ¢ ¢ Q.
m—o0
For ¢™ ¢ Q™ = I"™(Q) the finite dimensional initial value problem (3.3), (3.4) takes the form

(3.11) Maton(t) + Kn(wa(t);q™) = Fa(t), 0<t<T

(3.12) M,w,(0) = wd

where wn(t) € R*™!, M, is the (n — 1) x (n — 1) - Gram matrix whose (ij)-th entry is given
by M =< ¢l o) >, Fu(t) and vl are the (n — 1)-vectors whose i-th elements are glven by
Fi(t) =< fa(t,-),n > and wd =< u®, % >, respectively, and K,(- ;¢™) : R*~! — R™~! is given
by

ng™(nv')o! — ng™(n{v? — v} {v? - v'}, i=1
nqm(n{vi _ v"‘l}){v" - vi—l}
Ki(v;q™) = { —ng™(n{v't! — '} {v't! — v}, i=23,.,n—2
nqm(n{vn—l - vn—2}){vn—l - vn—2}
+ng™(—nv" " 1)o"-1, i=n-—1

for v e R*-1. ~
If g™ € Q™ is given by ¢™(8) = Z a7 ¥ (161;84m), for 8 £ R, solving the identification problem

(ID™) involves the choosing of parameters (95,47 9 0 )T from a compact subset of R™+2
so as to minimize the functional ®(¢™) = &(ua(q™);2) where un(¢™) is given by ua(t;¢™) =

7



n-1 .
> wi(t;q™)eh, t e [0,7] with w, (- ;¢™) the solution to the initial value problem (3.11), (3.12) in
j=1
R"~! corresponding to ¢™. ,

In order to actually test our scheme we let ¢*(6) = a(1 — .5e~ % ) for § e R witha= 9and b= 5
(note that §Dg*(8) + ¢*(09) > .45 for 6 ¢ R and consequently that condition (3.8) is satisfied by ¢*)
and set z(t,z) = 5e~'(z — z3),z €[0,1],¢ > 0. Then setting

feo =500 - 2o (Feo) Fun},

z ¢ [0,1],¢ > 0, and u°(z) = 5(z — z3),z ¢ [0,1], we used our scheme to attempt to estimate ¢*
based upon the observations {z(.55,-)}}2,.

All integrals that had to be computed numerically (i.e. some of the L, inner products and the
integral appearing in the definition of the least-squares performance index (3.9)) were computed
using a composite two point Gauss-Legendre quadrature rule on [0,1]. For each n and m the IMSL
implementation (routine ZXSSQ) of the Levenberg-Marquardt algorithm, an iterative steepest de-
scent/Newton’s method hybrid, was used to solve the finite dimensional nonlinear least-squares
minimization problem (ID]'). For a given choice of the parameters ¢'™, the initial value problem
(3.11), (3.12) was solved in each iteration using the IMSL routine DGEAR with the stiff option
operative. As an initial guess for ¢~ we took ¢°(8) = 1, for # € R with 6,0 = 4.

All computations were carried out on a Cray X-MP/48 at the San Diego Supercomputer Center.
Standard coding techniques which permit optimal vectorization were used whenever possible. These
included the nesting of loops with the largest ranges the deepest, and the separation of vectorizable
and non-vectorizable code into different loops. In general, we observed that in the absence of
vectorization, the Cray was able to run our codes in approximately 1% of the time that it took an IBM
3081. Vectorization on the Cray then yielded an additional speed-up factor of 17. Representative
results that we obtained for various values of n and m are shown in Figures 3.1 - 3.3 below.

The CPU times on the Cray for these runs ranged from about 3 seconds forn = 8, m = 1 to about
180 seconds for n = 20, m = 4. The value of the performance index was reduced from ®,,(¢°) ~ 10~2
to ®,(g7") =~ 10~*. We solved the problem (ID7T) unconstrained. That is we did not enforce the
constraints in the definition of Q which render it and I™(Q) = Q™ compact. Thus it was not
surprising that, as we have seen before in the case of linear system identification, for each n, the
inherent ill-posedness of the problem of identifying functional parameters began to cause difficulties
as m was increased (see [1]). We were, to a certain degree, able to mitigate these instability effects
with the introduction of Tikhonov regularization (see [11]). However, at least from a qualitative
point of view, this is probably unnecessary since we seem to obtain reasonably good estimates with
m relatively small. It is worth noting that we have also tested our approach on the much simpler
problem of identifying constant parameters (for example, the estimation of the parameters a and b in
the definition of ¢*). In these tests it performed superbly with convergence to the true values of the
parameters as n — oo immediately apparent. Finally, we also tested our scheme using discrete or
sampled rather than distributed observations in the spatial variable although strictly speaking these
examples can not be treated with our theory. With measurements taken at only one spatial point,
x = .58 (i.e. with the observations {z(.57,.58)}}2,), the scheme’s performance remained essentially
unchanged from that observed with distributed observations. We note that the existing theory for
the case of linear dynamics (see [2]) can handle spatially discrete measurements. An extension of
these results to the nonlinear case is currently being investigated but at present remains an open
question.

4. THE IDENTIFICATION OF NONLINEAR DAMPING IN SECOND ORDER SYSTEMS

In this section we consider the identification of nonlinear dissipation mechanisms in abstract infi-
nite dimensional second order elastic systems. In our treatment below we assume that the
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stiffness operator is linear. However we note that a similar approach can be used to identify a
nonlinear stiffness operator in the presence of linear damping. We are currently looking into the
extension of our theory to systems which involve both nonlinear stiffness and damping. A more
detailed presentation along with proofs for the theoretical results we summarize below can be found
in [5].

I[,e]t the spaces H,V,V* Q, and Z, and the set Q be as they were defined for abstract first order
systems at the beginning of section 3. For each ¢ € @ let the operator A(g) ¢ L(V,V*) satisfy the
following conditions:

(A1) (Symmetry) For all ¢, ¢ € V < A(q)p, ¥ >=< o, A(q)¥ >;

(A2) (Continuity) For each ¢ € V' the map ¢ — 2A(q)y is continuous from Q C Q into V*;

(A3) (Equi-V-Coercivity) There exist constants w € R and a > 0, both independent of ¢ ¢ Q for
which < 2(q)p, ¢ > +wlp|? > allg||?, for all p £ V and ¢ € Q;

(A4) (Equi-Boundedness) The operators 2(q) are uniformly bounded in q for ¢ € Q. That is, there
exists a constant 8 > 0, independent of ¢ € @, for which ||A(¢)]l. < Bllgll, for all p £ V;

Also, for each ¢ £ Q let the operator B(g) : Dom(B(q)) C V — 2" satisfy the folling conditions:

(B1) (Domain Uniformity) Dom(®B(q)) = Dom(*B) is independent of q for ¢ € Q, and 0 ¢ Dom(B);

(B2) (Continuity) For each ¢ ¢ Dom(B) and ¥(g) ¢ B(q)y the map ¢ — ¥(q) is continuous from
Q C Qinto V*; '

(B3) (Maximal Monotonicity) For all (¢1,%1),(2,%2) € By = {(p,¥) e Vx V* : o Dom(B), v ¢
B(q)p} we have < ¥ — 2,91 — 2 > > 0 with B, not properly contained in any other
subset of V' x V* for which this monotonicity condition holds;

(B4) (Equi-Boundedness) The operators B(¢g) map V-bounded subsets of Dom(B) into subsets
of V* which are uniformly bounded in q for ¢ € Q. That is, if S is a V-bounded subset of
Dom(B), the set B(q)S is V*-bounded, uniformly in q for ¢ ¢ Q.

Let T > 0 and for each g € Q let u®(q) € V, ul(q) € H, and f(- ;q) € L1(0,T; H). We assume
that the mappings ¢ — u%(q),q¢ — u!(g), and ¢ — f(¢;¢) are continuous from Q C Q into V, H, and
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H respectively, for almost every t € (0,T). For every z ¢ Z let (u,v) — @(u,v; z) be a continuous
mapping from C(0,T;V x H) into R*. The identification problem, which we shall again denote by
(ID), takes the form:

(ID)  Given observations z £ Z, determine parameters § ¢ @ which minimize the functional

®(q) = B(u(q),u(q); 2)

where for each ¢ £ @, u(q) = u(- ;q) is the mild solution to the initial' value problem

(4.1) i(t) + Bg)u(t) + A)u(t) 3 f(t;9), 0<t<T

(42) u(0) = u°(g), 4(0) = u'(q).

To make the notion of a mild solution to a second order initial value problem of the form (4.1),
(4.2) precise, we rely on a reformulation as an equivalent first order system in a product space
and then apply the abstract theory outlined in section 2. For each ¢ € @ define the Hilbert space
X, =V x H with inner product (-,-), given by

(4.3) ((e1,¥1), (2, ¥2))g =< A(Q)p1,02 > +w < 1,02 > + < Yy,¢2 > .

We denote the corresponding induced norm on X, by |- |;. We note that our assumptions on the
operators %(g) guarantee that (4.3) indeed defines an inner product on V x H and that the Banach
spaces {Xg,|-|;} are norm equivalent, uniformly in q for ¢ € @, to the Banach space X =V x H
endowed with the standard product topology induced by the norm [(p,¥)|lx = (ll¢lI> + |¥|>)3.
For each ¢ £ Q define the operator A(g) : Dom(A(g)) C X, — 2% by

A(Q)p¥) = (=, {A(9)p + B(g)¥} N H),

for (¢,9¥) € Dom(A(q)) = {(p,¥) e VxH: eV, {AUgp + B()¥}NH # ¢}. It can be
shown (see [5]) that there exists a ¥ > 0, independent of ¢ € Q, for which the operator A(q) + 71 is
m-accretive on Dom(A(q)) C X, for each g ¢ Q. Also, for each g € Q define F(- ;q) € L1(0,T; X,) by
F(t;q) = (0, f(t;q)), for almost every ¢ € (0,T) and set z°(q) = (u°(g), u'(q)) £ X,. It follows that
for every q € @, A(q) and F(- ;q) generate a nonlinear evolution system {U(¢,s;9) :0< s <t < T}
on Dom(A(q)) C X, satisfying conditions (i) - (iii) given in section 2. Henceforth we shall assume
that z%(q) eDom(A(q)) for each ¢ ¢ Q, and by a mild solution to the second order initial value
problem (4.1), (4.2) we shall mean the V-continuous function u(- ;q) given by the first component
of the X, (or X)-continuous function z(- ;q) = U(-,0;¢)z%(g). We shall take u(- ;q) to be the
H-continuous second component of z(- ;q).

We note that if assumption (B4) is strengthened to the condition that the operators B(g) map
H-bounded subsets into V*-bounded subsets, uniformly in q for ¢ £ Q, it can be argued (see [5])
that Dom(A(g)) = X, = X. In addition, since conditions (A3) and (A4) imply that Dom (2A(q)) =
{p € V:A%(q)p € H} is dense in V (see [16]) it is clear that the operators A(q) will also be densely
defined when the set {¢ € V : B(q)p ¢ H} is dense in H. In particular this will in fact be the case
for all of the standard linear dissipation mechanisms - for example, air (B ~ I), so called structural
(B ~ A%), and Kelvin-Voigt viscoelastic (B ~ A) damping.

With the existence and uniqueness of mild solutions on X, now demonstrated for each ¢ ¢ Q, the
q-uniform norm equivalence of X, and X will allow us to subsequently ignore the q-dependence of the
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state spaces and to develop our approximation theory and convergence results on the g-independent
space X.

Once again, as was the case with first order systems, our approximation theory is of Galerkin
type. For each n = 1,2,... let H, be a finite dimensional subspace of H with H,, C V. Let
P,; H — H, denote the orthogonal projection of H onto H,, with respect to the standard inner
product on H,< -,- >, and we assume that P,(Dom(B)) C Dom(®B), for all n. We also again
assume that condition (D) given in section 3 is satisfied. For each n = 1,2,... and each q £ Q
let A,(q) € L(H,) and B,(q) : Dom(B,) C H, — 2"~ denote the Galerkin approximations to
A(q) and B(q) respectively. That is for v, € Hn,A,(q)on = ¥n where ¢, is the unique ele-
ment in H, which satisfies < A{¢)@n,Xn >=< @n,Xn >,Xn € Hn, and for v, € Dom(B,,) =
Dom(B) N Hn, Bn(g)pn ={¥n € Hn :<¥,Xn > = < ¥n,Xn >, Xn € Hn for some ¢ ¢ B(g)n}.
We set fa(- ;9) = Puf(- ;9) € L1(0,T; H,),ul(q) = Pau®(q), and ul(gq) = P.ul(gq), and consider
the sequence of approximating parameter identification problems given by:

(ID,) Determine parameters ¢, € @ which minimize the functional

®.(9) = (un(g), un(9); 2)

where for each ¢ € Q,u,(g) = u, (- ;¢) is the mild solution to the initial value problem in H, given
by

(44) in(t) + Bn(@)un(t) + Fa(Qua(t) 3 fa(tig), 0<t<T

(4.5) un(0) = ua(q),  a(0) = up(g)-

We again use the theory in section 2 to define what is meant by a mild solution to the second
order initial value problem (4.4), (4.5) in Hy,. For each n = 1,2,... let X, = H, x H,, and for each
q € Q define the operator A,(q) : Dom(A,) C X, — 2%X» by

An(Q)(‘pn;d’n) = (—l/)mﬁn(Q)SOn + %n(q)zbn)

for (¢n,¥n) € Dom(A,) = H, x Dom(B,). Set Fn(- ;q) = (0,fa(- ;9)) € L:1(0,T; X,) and
z9(g) = (uS(q),ul(q)). We assume u}(g) ¢ Dom(B,) so that z2(q) eDom(A,). We define the mild
solution to (4.4), (4.5) to be the first component of the function z,(- ;¢) = Un(-,0;¢)z2(q) € C(0,T;
Xn) where {Up,(t,5;9) : 0 < s <t < T} is the nonlinear evolution system on Dom(A,) generated
by An(g) and F,(- ;¢). That such an evolution system in fact exists can be argued as it was for the
corresponding infinite dimensional second order system using the definitions of the operators A,(q)
and B,(q), and the function fo(- ;¢) (see [5]). The function i, (- ;g) is obtained from the second
component of z,(- ;).

By using condition (D) to argue resolvent convergence, i.e., that for each A > 0 sufficiently large,
nlingo J(X; An(gn) +01)(¢n,¥n) = J(X; A(go) +@I)(@, %) in X for some & € R whenever (p,9) ¢ X

and (¢n,¥n) € X, with lim (¢n,¥n) = (o, %) and gq,90 € Q with lingo gn = qo, we are able to
11—+ 00 n—

apply Theorem 2.1 to obtain that nlingo un(gn) = u(go) in C(0,T; V) and nlinolo Un{gn) = u(go) in

C(0,T;H) whenever ¢n, g0 € @ with nlirr;o gn = qo. A continuous dependence result analogous to (3.6)

can also be obtained in this fashion. Then using estimates in the spirit of those given in (3.7) we find

that solutions g, to the problem (ID,) exist and that the sequence {§,}5%, admits a Q-convergent

subsequence, {gn;};2;, with lim gn; = ¢ and ¢ a solution to problem (ID). The discretization of
=00
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the admissible parameter set Q can be carried out, and a subsequent convergence theory established
exactly as they were in section 3 for first order systems. A complete and detailed discussion of the
results for second order inverse problems which we have summarized above can be found in [5).

To illustrate the application of our approach we consider an inverse problem involving the iden-
tification of a nonlinear damping functional in a one dimensional wave equation. Let Q = Cp(R)
endowed with the usual supremum norm, and let Q be the Q-closure of the set

{g ¢ Q:9(6) =—q(-0), 04(0) 20, for 6 ¢R,[q(8)] = q(bo),
for 18] > 60,9 € H'(—60,00), |9lr1(~60,00) < Ko,
q'(6) > 0, for ae. 8¢ (—05,00)}

where 8y and Ky are given positive constants. It is not difficult to show that Q is a compact subset
of Q.
For each ¢ € @ we consider the one dimensional wave equation with nonlinear damping given by

gtz (t, :c)+ q( (t z)) — 66:1: (E(z)%(t,x)) =f(t,z), t>0, O<z<l

with boundary and initial conditions
u(,0)=0, u(t,1)=0, t>0,

u(0,z) = u’(z), & (0,z)=ul(z), 0<z<1

where E € Loo(0,1) with E(z) > Eq > 0,ae. z £ (0,1),f ¢ L2((0,T) x (0,1)),u® ¢ H}(0,1), and
u € L(0,1) are given. We set H = L,(0,1),V = HE(0,1) and V* = H~!(0,1). The operator
A e L(V,V*) given by

1
< A, >=/E(I)D<p(x)Dt/)(1:)d:v, o, ¥ € HY0,1),
0

is easily shown to satisfy conditions (A1) - (A4). For each ¢ ¢ Q we define the operator B(g) : V —
V* via
1

<B@eb >= [d@OWEOD, o.b e HO,L).
0
(Note that in this case we in fact have R(B(q)) C H.) With the set Q as it has been defined above,
it is clear that conditions (B1)-(B4) are satisfied and moreover that B(g) maps H-bounded subsets
of V into V*-bounded subsets, uniformly in q for ¢ ¢ Q.
We take the observation space Z to be x/_, {R! x L»(0,1)} and a weighted least-squares perfor-
mance index, ®, of the form

v 3 1
(4.6) d(p,¥52) =) {Pi > le(tiz) — 2L + 0 / l(ti, ) - Zf(fc)lzd-'c}
i=1 0

i=1

for ¢ € C(0,T;V), ¥ € C(0,T; H), and z = ((2},22),(21,22), ..., (2}, 22)) € Z with p;, 0 > O,
1,2,..,v, 0<t) <tz <--- <ty < T,and0<x1<xz< <1:¢<1

13




As in our first order example, we employ linear spline based state approximation. For each n =
1,2,... let H, = span{y), ;‘;11 where the ¢/, are the standard linear B-splines on the interval [0,1]
defined with respect to the uniform mesh {0,1/n,2/n,...,1} as given by (3.10). Let P, : H — H,
denote the orthogonal projection of L(0,1) onto H, with respect to the standard La-inner product.
We again use linear interpolating splines to discretize the admissible parameter set Q. For m ¢ Z
and ¢ £ Q set

(4.7) (I™q)(6) = Y _ a(38,/m)b(161;8,)s9n(6)

i=1

for 8 £ R, where the ¥"(-;8,) are as they were defined in section 3, and 6, is that number in (0, 6o)
for which [¢(8)| = q(8,), |6] > 6,. (Note that in this case the lower limit of the sum in (4.7) is 1
rather than 0 since ¢ € @ implies q(0) = 0.) We again have that condition (D) is satisfied and that
mlimoc> I™q = g, uniformly in q for ¢ € Q. We set @™ = I"™(Q).

For H, and Q™ as defined above, the finite dimensional initial value problem (4.4), (4.5) takes
the form

(4.8) Matin (t) + Ca(0a(£);¢™) + Knwa(t) = Fa(t), 0<t < T,

(4.9) M, w,(0) =w2, M,w,(0) = w,li,

where the (n — 1) x (n — 1) matrix M, and the (n-1)-vectors f,(t) and w are as they were defined
in section 3, w} is the (n-1)-vector whose i-th component is given by wl = < ul, ¢} >, K, is
the (n — 1) x (n — 1) matrix whose (i,j)-th entry is given by KiJ =< E¢}, ¢l >, and Cu(- ;q™) :
R*~! — R"~1! is given by

Calvig™) = / {nz—i+1}q™ ({nz —i} {v' =o'~} +v') dz
inl.
+/ {i+1-nz}q™ ({nz—i} {u‘+1_vi}+vi) dz,

i=1,2---,n—1, for v ¢ R*"! with v%,v™ = 0. If w,(- ; ¢™) is the solution to the second order

n-1 R
initial value problem (4.8), (4.9) corresponding to ¢ ¢ Q™, then u,(t;¢™) = 3 wl(t;¢™)¢), and
j=1

n-1 . . m
Ua(t;q™) = Y wi(t; g™k, fort € [0,T). If g™ £ Q™ is given by ¢™(8) = 3 a7 Y (16];04m) sgn(6),
j=1 j=1

9 ¢R, the identification problem (ID7') becomes one of determining parameters (§*, ..., g, 8,m) in
some compact subset of R™+! which minimize ®,(¢™) = ®,(u.(¢™), tn(q™);2).
In order to actually test our scheme, we set

t(g) . { ﬁ]alasqn(ﬂ) - 0q. S (/] S 09‘
" L Blog-7sqn(6) 10> 6,

14
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with 8 = .15, = 2, and 8,- = 2.5. With
1 .1 .
y(t, z) = {3cos(§7rt) + 2szn(-§7rt)}szn7r:z:

fort > 0 and z ¢ [0, 1], we set

2 8 2
ft0) = S22 + 0 (P2 - B2 L 2),

with E = 1, u%(z) = y(0,z) = 3sinwz, and ul(z) = %‘f(O,:c) = wsinwz, for t > 0 and z € [0,1].

For observations upon which to base our fit, we took z = {(z},,z7)}}2, with z}, = y(5¢,.12) and

Z2(z) = %%(.51',2:), z ¢ [0,1], i=1,2,..,10. As an initial guess we set

60 ~12<6<12

¢ = { Bsgn(d) 6] > 1.2.

The weights {p;}}2, and {0;}}2; in the performance index (4.6) were all set equal to 1.

Using the same computational techniques and resources (both hardware and software) that we
used for the first order example described in the previous section, we obtained the results plotted
in Figures 4.1 - 4.3 below. The CPU times on the Cray X-MP /48 for these runs ranged from 84.96
seconds for n = 8, m = 3 to 1032.78 seconds for n = 20, m = 3. When n = 20, the value of the
performance index ®, was reduced from &, (¢°) ~ 6.0 x 10~2 to ®,(¢™) ~ 2.0 x 1073. For other
values of n, the reduction in ®, was less pronounced. In this particular example we found (and it is
apparent from the figures) that truly satisfactory results could not be obtained until n was chosen
sufficiently large. However, as is clear from Figure 4.3 the scheme performed extremely well when
n = 20. Once again, as in the case of a first order system, we found that although our theory does
not apply, similar results could be obtained using a performance index involving spatially discrete
measurements of velocity. As expected, since the problems (ID]') were solved unconstrained (i.e.
the compactness assumption on Q, and therefore Q™ for each m, were not enforced) the presence of
instabilities became apparent for each n with m sufficiently large.

5. CONCLUDING REMARKS

In this paper we have summarized the theoretical framework for the identification of nonlinear
distributed parameter systems which we have developed elsewhere ([3] and [5]), and, more impor-
tantly, have for the first time provided numerical evidence that our approach is indeed feasible and
in fact performs well. In the case of second order systems, while our focus here has been on the
identification of nonlinear damping in systems with linear stiffness, our theory is easily modified to
handle the estimation of a nonlinear stiffness operator in the presence of linear damping. We are
currently studying the extension of our results to second order systems which simultaneously involve
both nonlinear stiffness and damping. Further numerical studies involving supercomputing are also
presently underway. In addition to continuing our efforts using simulation data, we intend to test
our schemes using experimental data in the near future.
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