2,028 research outputs found
Correlation between patent foramen ovale, cerebral "lesions" and neuropsychometric testing in experienced sports divers: does diving damage the brain?
SCUBA diving exposes divers to decompression sickness (DCS). There has been considerable debate whether divers with a Patent Foramen Ovale of the heart have a higher risk of DCS because of the possible right-to-left shunt of venous decompression bubbles into the arterial circulation. Symptomatic neurological DCS has been shown to cause permanent damage to brain and spinal cord tissue; it has been suggested that divers with PFO may be at higher risk of developing subclinical brain lesions because of repeated asymptomatic embolization of decompression-induced nitrogen bubbles. These studies however suffer from several methodological flaws, including self-selection bias. We recruited 200 volunteer divers from a recreational diving population who had never suffered from DCS; we then randomly selected 50 of those for further investigation. The selected divers underwent brain Magnetic Resonance Imaging to detect asymptomatic brain lesions, contrast trans oesophageal echocardiography for PFO, and extensive neuro-psychometric testing. Neuro-psychometry results were compared with a control group of normal subjects and a separate control group for subjects exposed to neurotoxic solvents. Forty two divers underwent all the tests and are included in this report. Grade 2 Patent Foramen Ovale was found in 16 (38%) of the divers; brain Unidentified Bright Objects (UBO's) were found in 5 (11.9%). There was no association between PFO and the presence of UBO's (P = 0.693) or their size (p = 0.5) in divers. Neuropsychometric testing in divers was significantly worse from controls in two tests, Digit Span Backwards (DSB; p < 0.05) and Symbol-Digit-Substitution (SDS; p 0.01). Compared to subjects exposed to neurotoxic solvents, divers scored similar on DSB and SDS tests, but significantly better on the Simple Reaction Time (REA) and Hand-Eye Coordination (EYE) tests. There was no correlation between PFO, number of UBO's and any of the neuro-psychometric tests. We conclude that for uneventful recreational diving, PFO does not appear to influence the presence of UBO's. Diving by itself seems to cause some decrease of short-term memory and higher cognitive function, including visual motor skills; this resembles some of the effects of nitrogen narcosis and we suggest that this may be a prolonged effect of diving
X-ray reprocessing in Seyfert Galaxies: simultaneous XMM-Newton/BeppoSAX observations
We selected a sample of eight bright unobscured (at least at the iron line
energy) Seyfert Galaxies observed simultaneously by XMM-Newton and BeppoSAX,
taking advantage of the complementary characteristics of the two missions. The
main results of our analysis can be summarized as follows: narrow neutral iron
lines are confirmed to be an ubiquitous component in Seyfert spectra; none of
the analyzed sources shows unambiguously a broad relativistic iron line; all
the sources of our sample (with a single exception) show the presence of a
Compton reflection component; emission lines from ionized iron are observed in
some sources; peculiar weak features around 5-6 keV (possibly arising from
rotating spots on the accretion disk) are detected in two sources. The scenario
emerging from these results strongly requires some corrections for the
classical model of reprocessing from the accretion disk. As for materials
farther away from the Black Hole, our results represent a positive test for the
Unification Model, suggesting the presence of the torus in (almost) all
sources, even if unobscured.Comment: Accepted for publication in A&
Evolution in the iron abundance of the ICM
We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies
at , which cover a temperature range of keV. Our analysis
is aimed at measuring the iron abundance in the ICM out to the highest redshift
probed to date. We find that the emission-weighted iron abundance measured
within in clusters below 5 keV is, on average, a factor of
higher than in hotter clusters, following , which confirms the trend seen in local samples. We made use of
combined spectral analysis performed over five redshift bins at
to estimate the average emission weighted iron abundance. We find a constant
average iron abundance as a function of redshift,
but only for clusters at . The emission-weighted iron abundance is
significantly higher () in the redshift range
, approaching the value measured locally in the inner radii for a mix of cool-core and non cool-core clusters in the
redshift range . The decrease in with can be
parametrized by a power law of the form . The observed
evolution implies that the average iron content of the ICM at the present epoch
is a factor of larger than at . We confirm that the ICM is
already significantly enriched () at a look-back time
of 9 Gyr. Our data provide significant constraints on the time scales and
physical processes that drive the chemical enrichment of the ICM.Comment: 4 pages, 4 figures, to appear in the Proceedings of "The Extreme
Universe in the Suzaku Era", Dicember 2006, Kyoto (Japan
An X-ray view of Mrk 705: A borderline narrow-line Seyfert 1 galaxy
Mrk 705 exhibits optical properties of both narrow- and broad-line Seyfert 1
galaxies. We examine the X-ray properties of this borderline object utilising
proprietary and public data from Chandra, ASCA, ROSAT and RXTE, spanning more
than twelve years. Though long-term flux variability from the pointed
observations appears rather modest (about 3 times), we do find examples of rare
large amplitude outbursts in the RXTE monitoring data. There is very little
evidence of long-term spectral variability as the low- and high-energy spectra
appear constant with time. A 6.4 keV emission line is detected in the ASCA
spectra of Mrk 705, but not during the later, higher flux state Chandra
observation. However, the upper limit on the equivalent width of a line in the
Chandra spectrum is consistent with a constant-flux emission line and a
brighter continuum, suggesting that the line is emitted from distant material
such as the putative torus. Overall, the X-ray properties of Mrk 705 appear
typical of BLS1 activity.Comment: 7 pages, 7 figures. Accepted for publication in A&A (Research Note
Tracing the evolution in the iron content of the ICM
We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies
at z>0.3, which cover a temperature range of 3>kT>15 keV. Our analysis is aimed
at measuring the iron abundance in the ICM out to the highest redshift probed
to date. We find that the emission-weighted iron abundance measured within
(0.15-0.3)R_vir in clusters below 5 keV is, on average, a factor of ~2 higher
than in hotter clusters, following Z(T)~0.88T^-(0.47)Z_o, which confirms the
trend seen in local samples. We made use of combined spectral analysis
performed over five redshift bins at 0.3>z>1.3 to estimate the average emission
weighted iron abundance. We find a constant average iron abundance Z_Fe~0.25Z_o
as a function of redshift, but only for clusters at z>0.5. The
emission-weighted iron abundance is significantly higher (Z_Fe~0.4Z_o) in the
redshift range z~0.3-0.5, approaching the value measured locally in the inner
0.15R_vir radii for a mix of cool-core and non cool-core clusters in the
redshift range 0.1<z<0.3. The decrease in Z_Fe with redshift can be
parametrized by a power law of the form ~(1+z)^(-1.25). The observed evolution
implies that the average iron content of the ICM at the present epoch is a
factor of ~2 larger than at z=1.2. We confirm that the ICM is already
significantly enriched (Z_Fe~0.25Z_o) at a look-back time of 9 Gyr. Our data
provide significant constraints on the time scales and physical processes that
drive the chemical enrichment of the ICM.Comment: 6 pages, 6 figures, to appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching
(Germany
High efficiency thermionic converter studies
The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV
CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment
(abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at
z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a
region which corresponds to almost three virial radii. We measure fluxes of 5
emission lines of 76 cluster members enabling us to unambiguously derive O/H
gas metallicities, and also SFRs from Halpha. For intermediate massses we find
a similar distribution of cluster and field galaxies in the MZR and mass vs.
sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and
higher O/Hs compared to their disk-dominated counterparts. We use the location
of galaxies in the projected velocity vs. position phase-space to separate our
cluster sample into a region of objects accreted longer time ago and a region
of recently accreted and infalling galaxies. We find a higher fraction of
accreted metal-rich galaxies (63%) compared to the fraction of 28% of
metal-rich galaxies in the infalling regions. Intermediate mass galaxies
falling into the cluster for the first time are found to be in agreement with
predictions of the fundamental metallicity relation. In contrast, for already
accreted star-forming galaxies of similar masses, we find on average
metallicities higher than predicted by the models. This trend is intensified
for accreted cluster galaxies of the lowest mass bin, that display
metallicities 2-3 times higher than predicted by models with primordial gas
inflow. Environmental effects therefore strongly influence gas regulations and
control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies.
We also investigate chemical evolutionary paths of model galaxies with and
without inflow of gas showing that strangulation is needed to explain the
higher metallicities of accreted cluster galaxies. Our results favor a
strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies
when accreted by the cluster.Comment: Version better matched to the published version, including table with
observed and derived quantities for the 76 cluster galaxie
- …