438 research outputs found

    Present dynamics of the savanna-forest boundary in the congolese Mayombe : a pedological, botanical and isotopic (13C and 14C) study

    Get PDF
    Isolated savannas enclosed by forest are especially abundant in the eastern part of the Congolese Mayombe. They are about 3000 years old, and were more extensive some centuries ago. The boundary between forest and savanna is very abrupt, as a consequence of the numerous savanna fires lit by hunters. Floristic composition and vegetation structure data, organic carbon ratios, delta 14C and delta 13C measurements presented here show that forest is spreading over savanna at the present time and suggest that the rate of forest encroachment is currently between 14 and 75 m per century, and more probably about 20-50 m per century. As most savannas are less than 1 km across, such rates mean, assuming there are no changes in environmental conditions, that enclosed savannas could completely disappear in the Mayombe in about 1000-2000 years. (Résumé d'auteur

    Soils Drowned in Water Impoundments: A New Frontier

    Get PDF
    Water impoundments have major impacts on biogeochemical cycles at the local and global scales. However, although reservoirs flood soils, their biogeochemical evolution below water and its ecological consequences are very poorly documented. We took advantage of the complete emptying of the Guerlédan Reservoir (Brittany, France) to compare the composition of soils flooded for 84 years with that of adjacent non-flooded soils used as reference, in 3 situations contrasted by their soil type (Cambisol and Podzol) and initial land-use (forest or grassland). In the annual drawdown zone, upper horizons of submerged soils are eroded, especially near the upper shore and on slopes. In the permanently drowned area, silty sediments cover drowned soils. Compared to reference soils, forest soils drowned for 84 years maintain their original morphological differentiation, but colors are dull, and the humus (O horizons) have virtually disappeared. Spodic horizons are depleted in poorly crystallized iron minerals while the accumulation of amorphous aluminum compounds remains unchanged. Soil bulk density increases as well as pH while total phosphorus content is almost unchanged. On the other hand, the pH of drowned grassland soils is lower by almost one unit, and the total phosphorus content was halved compared to reference soils. In this context, in addition to the effects of flooding, differences are attributed to post-1950 changes in agricultural practices i.e., liming and fertilization. Organic matter stocks decrease by almost 40%. This rate is similar in Cambisols and Podzols. Assuming that carbon was lost as CO2 and CH4, the corresponding flux averaged over the reservoir's life is close to global areal estimates of CO2 emissions in temperate reservoirs and offsets a significant proportion of the carbon burial in reservoir sediments. Hence, flooded soils contribute significantly to the GHG budget of reservoirs, provide original long-term experimental sites to measure the effects of anoxia on soils and contain archives of past soil properties

    Teaching old compounds new tricks: efficient N2 fixation by simple Fe(N2)(diphosphine)2 complexes

    Get PDF
    The Fe(0) species Fe(N2)(dmpe)2 exists in equilibrium with the previously unreported dimer, [Fe(dmpe2)2(ÎĽ-N2)]. For the first time these complexes, alongside Fe(N2)(depe)2, are shown unambiguously to produce N2H4 and/or NH3 upon addition of triflic acid; for Fe(N2)(depe)2 this represents one of the highest electron conversion efficiencies for Fe complexes to date
    • …
    corecore