1,375 research outputs found

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019

    Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum

    Full text link
    The relation between the clustering properties of luminous matter in the form of galaxies and the underlying dark matter distribution is of fundamental importance for the interpretation of ongoing and upcoming galaxy surveys. The so called local bias model, where galaxy density is a function of local matter density, is frequently discussed as a means to infer the matter power spectrum or correlation function from the measured galaxy correlation. However, gravitational evolution generates a term quadratic in the tidal tensor and thus non-local in the density field, even if this term is absent in the initial conditions (Lagrangian space). Because the term is quadratic, it contributes as a loop correction to the power spectrum, so the standard linear bias picture still applies on large scales, however, it contributes at leading order to the bispectrum for which it is significant on all scales. Such a term could also be present in Lagrangian space if halo formation were influenced by the tidal field. We measure the corresponding coupling strengths from the matter-matter-halo bispectrum in numerical simulations and find a non-vanishing coefficient for the tidal tensor term. We find no scale dependence of the bias parameters up to k=0.1 h/Mpc and that the tidal effect is increasing with halo mass. While the Lagrangian bias picture is a better description of our results than the Eulerian bias picture, our results suggest that there might be a tidal tensor bias already in the initial conditions. We also find that the coefficients of the quadratic density term deviate quite strongly from the theoretical predictions based on the spherical collapse model and a universal mass function. Both quadratic density and tidal tensor bias terms must be included in the modeling of galaxy clustering of current and future surveys if one wants to achieve the high precision cosmology promise of these datasets.Comment: 14 pages, 4 figures, 1 tabl

    Individual behavioural responses of an intermediate host to a manipulative acanthocephalan parasite and the effects of intra-specific parasite competition

    Get PDF
    © 2018 Timo Thünken. Background: Parasites with complex life cycles depend on the ingestion of their intermediate host by the final host. To complete their life cycle successfully, parasites frequently manipulate the behaviour and appearance of the intermediate host. Within host–parasite systems, there is considerable variation in the intermediate host’s behavioural response to infection. Aim: Identify sources of parasite-induced variation in intermediate hosts’ traits by focusing on intra- and inter-individual variation in behavioural responses to parasitic manipulation, taking infection intensity – and thus parasitic competition – into account. Organism: The acanthocephalan parasite Polymorphus minutus, which alters the phototactic behaviour and activity of its intermediate host, Gammarus pulex, thereby increasing the probability of being eaten by the final host. Methods: We repeatedly examined the behaviour of individual G. pulex varying in intensity of infection with P. minutus from uninfected to multiple-infected. We analysed phototactic responses and activity. Results and conclusions: Individual gammarids differed in phototactic behaviour and in activity patterns, with repeatability ranging from 20% to 50%. Infected gammarids showed greater between-individual variation in phototaxis but not activity than uninfected gammarids. All uninfected gammarids were photophobic, whereas the phototactic behaviour of infected gammarids ranged from photophobia to photophilia. On average, multiple-infected gammarids were similarly photophobic as uninfected ones. Single-infected gammarids were less photophobic than uninfected and multiple-infected conspecifics. This suggests that intra-specific parasitic competition affects the manipulative abilities of parasites. Both groups of infected gammarids were on average less active than uninfected ones, and this effect was mainly driven by some infected individuals. In conclusion, behavioural variation of gammarids was caused both by individual differences in responses to manipulation/infection, and by the reduced manipulative capacities of parasites facing intra-specific competition

    Manoeuvring simulation on the bridge for predicting motion of real ships and as training tool in ship handling simulators

    Full text link
    International sea transport has growing rapidly dur-ing the period of the last decade. Ships became larg-er and wider and its container capacity is still in-creasing to 12.000 TEU and even more. To navigat

    Photodissociation of Conformer-Selected Ubiquitin Ions Reveals Site-Specific Cis/Trans Isomerization of Proline Peptide Bonds

    No full text
    Ultraviolet photodissociation (UVPD) of gas-phase proteins has attracted increased attention in recent years. This growing interest is largely based on the fact that, in contrast to slow heating techniques such as collision induced dissociation (CID), the cleavage propensity after absorption of UV light is distributed over the entire protein sequence, which can lead to a very high sequence coverage as required in typical top-down proteomics applications. However, in the gas phase, proteins can adopt a multitude of distinct and sometimes coexisting conformations, and it is not clear how this three-dimensional structure affects the UVPD fragmentation behavior. Using ion mobility–UVPD–mass spectrometry in conjunction with molecular dynamics simulations, we provide the first experimental evidence that UVPD is sensitive to the higher order structure of gas-phase proteins. Distinct UVPD spectra were obtained for different extended conformations of 11+ ubiquitin ions. Assignment of the fragments showed that the majority of differences arise from cis/trans isomerization of one particular proline peptide bond. Seen from a broader perspective, these data highlight the potential of UVPD to be used for the structural analysis of proteins in the gas phas

    An algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering

    Full text link
    The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In this study we develop a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. To generate a mock galaxy catalogue for testing purposes, we use the Halo Occupation Distribution approach applied to a large ensemble of N-body simulations to model pre-existing SDSS Luminous Red Galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We develop a new statistic that suppresses the small-scale contributions to these observations and show that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to 5 Mpc/h. Furthermore, the residual incoherence between the galaxy and matter fields can be explained using a theoretical model for scale-dependent bias, giving us a final estimator that is unbiased to within 1%. We also perform a comprehensive study of other physical effects that can affect the analysis, such as redshift space distortions and differences in radial windows between galaxy clustering and weak lensing observations. We apply the method to a range of cosmological models and show the viability of our new statistic to distinguish between cosmological models.Comment: 23 pages, 14 figures, accepted by PRD; minor changes to V1, 1 new figure, more detailed discussion of the covariance of the new ADSD statisti

    Impact of anion polarizability on ion pairing in microhydrated salt clusters

    Get PDF
    Despite longstanding interest in the mechanism of salt dissolution in aqueous media, a molecular level understanding remains incomplete. Here, cryogenic ion trap vibrational action spectroscopy is combined with electronic structure calculations to track salt hydration in a gas phase model system one water molecule at a time. The infrared photodissociation spectra of microhydrated lithium dihalide anions [LiXX′(H2O)n]- (XX′ = I2, ClI and Cl2; n = 1–3) in the OH stretching region (3800–2800 cm-1) provide a detailed picture of how anion polarizability influences the competition among ion–ion, ion–water and water–water interactions. While exclusively contact ion pairs are observed for n = 1, the formation of solvent-shared ion pairs, identified by markedly red-shifted OH stretching bands (-1), originating from the bridging water molecules, is favored already for n = 2. For n = 3, Li+ reaches its maximum coordination number of four only in [LiI2(H2O)3]-, in accordance with the hard and soft Lewis acid and base principle. Water–water hydrogen bond formation leads to a different solvent-shared ion pair motif in [LiI2(H2O)3]- and network formation even restabilizes the contact ion pair motif in [LiCl2(H2O)3]-. Structural assignments are exclusively possible after the consideration of anharmonic effects. Molecular dynamics simulations confirm that the significance of large amplitude motion (of the water molecules) increases with increasing anion polarizability and that needs to be considered already at cryogenic temperatures

    Bias, redshift space distortions and primordial nongaussianity of nonlinear transformations: application to Lyman alpha forest

    Full text link
    On large scales a nonlinear transformation of matter density field can be viewed as a biased tracer of the density field itself. A nonlinear transformation also modifies the redshift space distortions in the same limit, giving rise to a velocity bias. In models with primordial nongaussianity a nonlinear transformation generates a scale dependent bias on large scales. We derive analytic expressions for these for a general nonlinear transformation. These biases can be expressed entirely in terms of the one point distribution function (PDF) of the final field and the parameters of the transformation. Our analysis allows one to devise nonlinear transformations with nearly arbitrary bias properties, which can be used to increase the signal in the large scale clustering limit. We apply the results to the ionizing equilibrium model of Lyman-alpha forest, in which Lyman-alpha flux F is related to the density perturbation delta via a nonlinear transformation. Velocity bias can be expressed as an average over the Lyman-alpha flux PDF. At z=2.4 we predict the velocity bias of -0.1, compared to the observed value of -0.13 +/- 0.03. Bias and primordial nongaussianity bias depend on the parameters of the transformation. Measurements of bias can thus be used to constrain these parameters, and for reasonable values of the ionizing background intensity we can match the predictions to observations. Matching to the observed values we predict the ratio of primordial nongaussianity bias to bias to have the opposite sign and lower magnitude than the corresponding values for the highly biased galaxies, but this depends on the model parameters and can also vanish or change the sign.Comment: 18 pages, 1 figur

    System-specific parameter optimization for non-polarizable and polarizable force fields

    Full text link
    The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation-protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms describing charge transfer and polarization effects. In this work, we introduce our implementation of the CTPOL model in OpenMM, which extends the classical additive FF formula by adding charge transfer (CT) and polarization (POL). Furthermore, we present an open-source parameterization tool, called FFAFFURR that enables the (system specific) parameterization of OPLS-AA and CTPOL models. The performance of our workflow was evaluated by its ability to reproduce quantum chemistry energies and by molecular dynamics simulations of a Zinc finger protein.Comment: 62 pages and 25 figures (including SI), manuscript to be submitted soo

    Supplementary materials: Holocene evolution of parabolic dunes, White River Badlands, South Dakota, USA, revealed by high-resolution mapping

    Get PDF
    The data paper includes supplementary figures from geomorphological analysis of dunes in the White River Badlands. These figures provide additional information to readers of the paper of this name. White River Badlands (WRB) of South Dakota record aeolian activity spanning late Pleistocene through latest Holocene (21 ka to modern), reflecting the effects of the last glacial period and Holocene climate fluctuations (i.e. Holocene Thermal Maximum, Medieval Climate Anomaly, and Little Ice Age). The WRB are important to paleoclimate studies because of the scarcity of climate proxies in the area. The goal of this study is to use 1 m/pixel resolution digital elevation models (DEMs) to distinguish early to middle Holocene parabolic dunes from late Holocene parabolic dunes. Results indicate that dunes are distinguished by slope and terrain ruggedness index or roughness. Differences are attributed to post-depositional wind erosion, soil formation, and mass wasting. Early to middle Holocene and late Holocene paleowind directions, 324˚± 13.1˚ (N=7) and 323˚ ± 3.0˚ (N = 19) respectively, are indistinguishable and like the modern wind regime. Results suggest that the landscape has significant resilience to wind erosion, which resulted in preservation of a mosaic of early and late parabolic dune. Quantification of differences in dune roughness will help refine the chronology of aeolian activity in the WRB, provide insight into drought-driven landscape evolution, and put activity in the WRB in a regional perspective
    • …
    corecore