64 research outputs found

    History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Full text link

    Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

    Get PDF
    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species

    Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice

    Get PDF
    ABSTRACT Rhizobia and associative bacteria promote growth in rice plants (Oryza sativa L.) through a series of mechanisms, but most studies on inoculation have been performed based on inoculation with these bacteria in a separate or singular manner. The objective of this study was to assess the efficiency of single/isolated inoculation and inoculation combined with symbiotic rhizobia from forage legume and with Azospirillum brasilense on promoting growth and the root colonization process in wetland rice. Two rhizobia among four isolates from a greenhouse and a laboratory experiment were selected that efficiently promoted seed germination and rice plant growth in a sterilized substrate and in soil. The two most efficient isolates (UFRGS Vp16 and UFRGS Lc348) were inoculated alone or in combination with a commercial product containing A. brasilense in two field experiments using two wetland rice cultivars over two growing seasons. In the field experiments, these isolates coinoculated with A. brasilense promoted larger increases in the agronomic variables of wetland rice compared to the control without inoculation. Confocal laser microscopy confirmed the presence of inoculated bacteria tagged with gfp (UFRGS Vp16, UFRGS Lc348, and A. brasilense) colonizing the root surface of the rice seedlings, mainly in the root hairs and lateral roots

    Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper

    Get PDF
    Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture

    Agricultural uses of plant biostimulants

    Get PDF

    Emended description of Herbaspirillum; Inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb nov; And classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3.

    No full text
    [Pseudomonas] rubrisubalbicans, a mild plant pathogen, Herbaspirillum seropedicae, and EF group 1 strains (clustered by an immunological method) were investigated by a polyphasic approach with DNA-rRNA and DNA-DNA hybridizations and auxanography on 147 substrates. Our results show that they all belong to the genus Herbaspirillum. In addition to H. seropedicae, two other species are described: Herbaspirillum rubrisubalbicans and a new unnamed species, Herbaspirillum species 3, containing mainly strains of clinical origin. The three species can be differentiated on the basis of their auxanographic features and DNA-DNA similarities. The type strain of H. rubrisubalbicans is NCPPB 1027 (=LMG 2286); representative strains of the third Herbaspirillum species are strains CCUG 189 (=LMG 5523), CCUG 10263 (=LMG 5934), and CCUG 11060 (=LMG 5321). It has been confirmed that H. rubrisubalbicans is an endophytic diazotroph. It colonizes the roots, the stems, and predominantly the leaves of sugarcane (Saccharum spp.), while Herbaspirillum seropedicae colonizes in large numbers many different species of the gramineae. Both diazotrophic Herbaspirillum species could be differentiated with meso-erythritol and N-acetylglucosamine. Oligonucleotide probes based on partial sequences of the 23S rRNA of H. seropedicae and H. rubrisubalbicans (HS and HR probes, respectively), were constructed and used as diagnostic probes

    Biostimulant effects of rhizobacteria on wheat growth and nutrient uptake depend on nitrogen application and plant development

    Full text link
    The capacity of plant growth-promoting rhizobacteria (PGPR) - Bacillus amyloliquefaciens GB03 (BamGB03), B. megaterium SNji (BmeSNji), and Azospirillum brasilense 65B (Abr65B) – to enhance growth and nutrient uptake in wheat was evaluated under different mineral N fertilizer rates, in sterile vs. non-sterile soils, and at different developmental stages. In gnotobiotic conditions, the three strains significantly increased plant biomass irrespective of the N rates. Under greenhouse conditions using non-sterile soil, growth promotion was generally highest at moderate N rate, followed by full N dose, while no significant effect of the inoculants was observed in the absence of N fertilizer. At 50N, plant biomass was most significantly increased in roots (up to +45% with Abr65B) at stem-elongation stage and in the ears (+19–23% according to the strains) at flowering stages. For some nutrients (N, P, Mn, and Cu), the biomass increases in roots and ears was paralleled with lowered nutrient concentrations in the same organs. Nevertheless, growth stimulation resulted in higher total nutrient uptake and nutrient uptake efficiency. Furthermore, Abr65B and BmeSNji counteracted the repression of root development caused by high N supply. Therefore, combining PGPR with a proper cultivated system, N rate, and plant stage could enhance their biostimulant effects
    corecore