1,535 research outputs found

    Topological Andr\'e-Quillen homology for cellular commutative SS-algebras

    Full text link
    Topological Andr\'e-Quillen homology for commutative SS-algebras was introduced by Basterra following work of Kriz, and has been intensively studied by several authors. In this paper we discuss it as a homology theory on CW SS-algebras and apply it to obtain results on minimal atomic pp-local SS-algebras which generalise those of Baker and May for pp-local spectra and simply connected spaces. We exhibit some new examples of minimal atomic SS-algebras.Comment: Final revision, a version will appear in Abhandlungen aus dem Mathematischen Seminar der Universitaet Hambur

    Bethe--Salpeter equation in QCD

    Get PDF
    We extend to regular QCD the derivation of a confining qqˉ q \bar{q} Bethe--Salpeter equation previously given for the simplest model of scalar QCD in which quarks are treated as spinless particles. We start from the same assumptions on the Wilson loop integral already adopted in the derivation of a semirelativistic heavy quark potential. We show that, by standard approximations, an effective meson squared mass operator can be obtained from our BS kernel and that, from this, by 1m2{1\over m^2} expansion the corresponding Wilson loop potential can be reobtained, spin--dependent and velocity--dependent terms included. We also show that, on the contrary, neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte

    17: Impact of disease and mobilizing agents on initial and remobilization failure

    Get PDF

    A New Deformation of W-Infinity and Applications to the Two-loop WZNW and Conformal Affine Toda Models

    Full text link
    We construct a centerless W-infinity type of algebra in terms of a generator of a centerless Virasoro algebra and an abelian spin-1 current. This algebra conventionally emerges in the study of pseudo-differential operators on a circle or alternatively within KP hierarchy with Watanabe's bracket. Construction used here is based on a special deformation of the algebra ww_{\infty} of area preserving diffeomorphisms of a 2-manifold. We show that this deformation technique applies to the two-loop WZNW and conformal affine Toda models, establishing henceforth WW_{\infty} invariance of these models.Comment: 8 page

    On Two-Current Realization of KP Hierarchy

    Full text link
    A simple description of the KP hierarchy and its multi-hamiltonian structure is given in terms of two Bose currents. A deformation scheme connecting various W-infinity algebras and relation between two fundamental nonlinear structures are discussed. Properties of Fa\'a di Bruno polynomials are extensively explored in this construction. Applications of our method are given for the Conformal Affine Toda model, WZNW models and discrete KP approach to Toda lattice chain.Comment: 28 pages, IFT-P/020/92-SAO-PAULO, Late

    Long-distance contribution to the forward-backward asymmetry in decays K+ --> pi+ l+ l-

    Full text link
    The long-distance contribution via the two-photon intermediate state to the forward-backward asymmetries in decays K+ --> pi+ l+ l- (l=e and mu) has been studied within the standard model. In order to evaluate the dispersive part of the K+ --> pi+ gamma* gamma* --> pi+ l+ l- amplitude, we employ a phenomenological form factor to soften the ultraviolet behavior of the transition. It is found that, this long-distance transition, although subject to some theoretical uncertainties, can lead to significant contributions to the forward-backward asymmetries, which could be tested in the future high-precise experiments.Comment: 13 pages, 5 figure

    A mechanism for morphogen-controlled domain growth

    Get PDF
    Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc

    Backward pion-nucleon scattering

    Get PDF
    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the NαN_\alpha, NγN_\gamma, Δδ\Delta_\delta and Δβ\Delta_\beta trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable uu, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a G39G_{39} resonance with a mass of 2.83 GeV as member of the Δβ\Delta_{\beta} trajectory from the corresponding Chew-Frautschi plot.Comment: 12 pages, 16 figure

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure
    corecore