17

IMPACT OF DISEASE AND MOBILIZING AGENTS ON INITIAL AND RE-MOBILIZATION FAILURE

DiPersio, J.F.¹, Smith, A.², Sempek, D.², Baker, A.², Jiang, S.³, Vij, P.¹, Cashen, A.¹, Westervelt, P.¹ ¹Washington University, St. Louis, MO; ²Barnes-Jewish Hospital, St. Louis, MO; ³University of British Columbia, Vancouver, BC, Canada.

Background: High-dose chemotherapy with autologous stem cell transplantation (ASCT) is a common treatment strategy in lymphoma and myeloma, but no standard approach for the mobilization of peripheral hematologic stem and progenitor cells has been established. Levels of circulating CD34+ cells, a surrogate marker for mobilization efficiency, vary widely between pts, and may be influenced by disease state, prior therapy, and/or mobilization regimen. Methods: The Washington University (St. Louis, MO) transplantation database includes clinical parameters from 407 MM, 562 NHL, and 164 HD pts who received an ASCT (1995-2006). A retrospective analysis of this large (1133 pts) population was conducted to determine factors associated with mobilization efficiency. Mobilization failure was defined as collection of $< 2 \times 10^{6}$ CD34+ cells/kg within 5 apheresis days. Statistical analysis included ANOVA with Scheffe Test to determine differences in mobilization between the various mobilization regimens (G-CSF, G-CSF/chemotherapy, G-/ GM-CSF, G-CSF/AMD3100). Results: All pts were included in the analysis; 87% received G-CSF alone as the initial mobilization regimen. Mobilization failure rates are summarized in Table 1. NHL and HD pts had a 4-fold higher failure rate than MM pts. G-CSF/chemo increased the median CD34+ yield compared to G-CSF alone, although no obvious impact on the failure rate was noted in this relatively small group of pts. Remobilization was associated with high failure rates in NHL (79.2%), HD (77.1%), and MM (73.3%). Pooled collections were <2 × 10⁶ CD34+/kg in 33.6%, 37.1%, and 36.7% of failed mobilizers, resp. G-CSF mobilization failures remobilized with G-CSF plus AMD3100 collected significantly more CD34+ cells than G-CSF-failures remobilized with either G-CSF, G/GM-CSF or G-CSF/chemo (1-way ANOVA: F(3, 233) = 27.878, F0.5(3, 233).05 = 2.643, p < .0001). The compared groups did not significantly differ in initial mobilization efficiency with G-CSF (as determined by ANOVA and Scheffe Test). Conclusions: The mobilization failure rate is substantially higher in NHL and HD pts than MM pts. Pts who fail initial mobilization are likely to fail a 2nd mobilization, regardless of disease state. As the combination of chemotherapy to G-CSF may not be sufficient to reduce failure rates, alternative mobilization strategies are needed to improve HSPC collection, particularly in NHL/HD pts and failed mobilizers.

First mobilization failures ($< 2 \times 10^{6} \text{ CD34} + /kg$)

	Mobilization regimen	N	Failures	Median yield (x10^6)	Median yield (x10^6)
NHL	G-CSF	471	26.5 %	2.89	2.76-3.04
	G-CSF/Chemo	35	22.9 %	4.68	2.8-8.53
	All*	564	28.7%		
HD	G-CSF	130	26.2%	3.01	2.75-3.37
	G-CSF/Chemo	12	16.7 %	5.38	2.35-9.52
	All*	165	24.8%		
ММ	G-CSF	386	6.5%	4.62	4.16-4.98
	G-CSF/Chemo	17	5.9%	8.52	4.46-16.3
	All*	409	6.6%		

*Incl. pts mobilized w. alternative regimens

18

AUTOLOGOUS PERIPHERAL BLOOD STEM CELL TRANSPLANT USING BUSULFAN, ETOPOSIDE, HIGH DOSE ARA-C, AND G-CSF PRIMING AS CONDITIONING REGIMEN IN PATIENTS WITH ACUTE MYELOID LEU-KEMIA IN FIRST COMPLETE REMISSION

Moscardó, F.¹, Díaz Mediavilla, J.², de la Rubia, J.¹, Fernández, P.³, Rayón, C.⁴, Cañigral, G.⁵, Arias, J.⁶, Palomera, L.⁷, Bello, J.L.⁸, Alcalá, A.⁹, Sayas, M.J.¹⁰, Burgaleta, C.¹¹, Mateos, M.¹², Amador, L.¹³, Pérez, M.¹⁴, Fernández, R.¹⁵, García, J.¹⁶, Martín, M.V.¹⁷, Román, A.¹⁸, Queizán, J.A.¹⁹, Fernández, J.²⁰, Sanz, M.A.¹, from the PETHEMA Cooperative Study Group. ¹Hospital Universitario La Fe, Valencia, Spain; ²Hospital Clínico San Carlos, Madrid, Spain; ³Hospital General de Alicante, Alicante, Spain; ⁴Hospital Central de Asturias, Oviedo, Spain; ⁵Hospital General de Castellón, Castellón, Spain; ⁶Hospital Xeral Lugo, Lugo, Spain; ⁷Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; ⁸Hospital Clínico Universitario Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; ⁹Hospital General de Jaen, Jaen, Spain; ¹⁰Hospital Dr. Peset, Valencia, Spain; ¹¹Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain; ¹²Hospital Clínico de Salamanca, Salamanca, Spain; ¹⁴Hospital Virgen de La Concba, Zamora, Spain; ¹⁵Hospital Insular de Las Palmas, Las Palmas, Spain; ¹⁶Hospital Ramón y Cajal, Madrid, Spain; ¹⁷Hospital Universitario Puerta del Mar, Cádiz, Spain; ¹⁸Hospital Fundación Jiménez Díaz, Madrid, Spain; ¹⁹Hospital General de Segovia, Segovia, Spain; ²⁰Hospital Universitario de Valladolid, Valladolid, Spain.

Introduction: Conditioning regimens for autologous stem cell transplantation (ASCT) in patients with acute myeloid leukemia (AML) using more specific drugs for myeloid malignancies, such as high-dose Ara-C (HD/Ara-C) and etoposide, have been increasingly proposed as an alternative the classic BUCY schedule. Objectives: To analize safety and efficacy of a conditioning regimen combining busulfan, etoposide, HD/Ara-C, and G-CSF priming for patients with AML in first complete remission (CR1) undergoing ASCT. Patients: 147 patients with AML in CR1 after induction and consolidation therapy with idarubicin or daunorubicin and Ara-C following a '3+7' schedule (PETHEMA LMA99 trial) underwent ASCT. They were 65 male and 82 female with a median age 46 years. The median WBC and platelet counts at presentation were 2 \times 10%/L (range, 0.04-193) and 59 \times 10%/L (range, 7-578), respectively. According to the MRC criteria, 125 patients with available karyotype (85%) were classified as follows: 24 patients (19%) with standard risk, 87 patients (70%) with intermediate risk, and 14 patients (11%) with high risk. Conditioning regimen consisted of busulfan 1 mg/kg/6 hours on days -8 to -5, etoposide 20 mg/kg/day on days -4 and -3, Ara-C 3 g/m²/12 hours on days -3 and -2, and G-CSF 10 µg/kg/day on days -9 to -2. Results: Median time from diagnosis to ASCT was 6 months. Median time to neutrophil count recovery above 0.5×10^9 /L was 12 days (range, 5-90) and days of hospital stay was 29 days (range, 11-94). Thirty-two percent of patients had bacteremia, 9.5% documented infection without bacteremia, and 21% clinically documented infection without microbiological documentation. The most relevant extrahematological toxicity was gastrointestinal toxicity grade \geq 3 (36%). Event-free survival (EFS) at 4 years was 53%. Cytogenetics was the only variable associated to EFS: 62% for standard-risk group, 52% for intermediate-risk group, and 24% for high-risk group (P = 0.0066). Five patients died due to ASCT (transplant-related mortality, 3.4%). Four of them died before day +100 mainly due to infections, while the remaining patient died of pulmonary thromboembolism 31 months after ASCT. Conclusions: The conditioning regimen combining busulfan, etoposide, HD/Ara-C, and G-CSF priming shows a high antileukemic efficacy in patients with AML in CR1. This regimen shows a moderate toxicity profile and low transplant-related mortality. Citogenetics was the only prognostic factor identified for EFS.

19

ARSENIC TRIOXIDE WITH ASCORBIC ACID AND HIGH-DOSE MELPHA-LAN FOR AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTA-TION FOR MULTIPLE MYELOMA

Qazilbash, M.H.¹, Jindani, S.², Gul, Z.², Saliba, R.¹, Hosing, C.¹, Mendoza, F.¹, Qureshi, S.P.¹, Weber, D.M.¹, Wang, M.¹, Flosser, T.¹, Couriel, D.P.¹, Kebriaei, P.¹, Popat, U.¹, Alousi, A.M.¹, De Lima, M.¹, Champlin, R.E.¹, Giralt, S.A.¹ University of Texas - MD Anderson Cancer Center, Houston, TX; ²Wayne State University/Detroit Medical Center, Detroit, MI.

Backround: Arsenic trioxide (ATO) has been shown to be synergistic with melphalan both in vitro and in vivo. We conducted a phase