103 research outputs found

    Propagation and dispersion of electrostatic waves in the ionospheric E region

    Get PDF

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.

    ALTERNATIVE METHODS OF DESALINATION FOR SUB-SAHARAN AFRICA: A REVIEW OF PREFILTRATION AND MICROBIAL DESALINATION CELL TECHNOLOGY

    Get PDF
    Gemstone Team NOSALTOur research project has addressed the global need for greater accessibility to potable drinking water, specifically within the regions of sub-Saharan Africa. Initially, we planned to design a unique desalination system that was composed of a pre-filtration unit, a microbial desalination cell (MDC) and a post-desalination treatment unit. When in-person lab work was no longer feasible due to COVID-19 guidelines, we refocused our project to review the construction, efficiency, and cost effectiveness of the different designs of potential prefiltration units and MDC configurations. Our review of potential prefiltration systems included both chemical and physical separation methods, and the review of the MDC included the air cathode, biocathode and stacked configurations. While researching the technical details of the prefiltration and MDC systems, we also considered the cultural and societal impacts of introducing a technology such as the MDC into our project region. Our project started as an analysis of an emerging technology, but as the team has grown, the project has transformed into a comprehensive review of the emerging microbial desalination technology and the societal impacts of implementing it into some of the water scarce regions of coastal sub-Saharan Africa

    Properties of Saturn Kilometric Radiation measured within its source region

    Get PDF
    On 17 October 2008, the Cassini spacecraft crossed the southern sources of Saturn kilometric radiation (SKR), while flying along high-latitude nightside magnetic field lines. In situ measurements allowed us to characterize for the first time the source region of an extra-terrestrial auroral radio emission. Using radio, magnetic field and particle observations, we show that SKR sources are surrounded by a hot tenuous plasma, in a region of upward field-aligned currents. Magnetic field lines supporting radio sources map a continuous, high-latitude and spiral-shaped auroral oval observed on the dawnside, consistent with enhanced auroral activity. Investigating the Cyclotron Maser Instability (CMI) as a mechanism responsible for SKR generation, we find that observed cutoff frequencies are consistent with radio waves amplified perpendicular to the magnetic field by hot (6 to 9 keV) resonant electrons, measured locally

    Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

    Get PDF
    This study explores how researchers’ analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers’ expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team’s workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers’ results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings

    The Crowdsourced Replication Initiative: Investigating Immigration and Social Policy Preferences. Executive Report.

    Get PDF
    In an era of mass migration, social scientists, populist parties and social movements raise concerns over the future of immigration-destination societies. What impacts does this have on policy and social solidarity? Comparative cross-national research, relying mostly on secondary data, has findings in different directions. There is a threat of selective model reporting and lack of replicability. The heterogeneity of countries obscures attempts to clearly define data-generating models. P-hacking and HARKing lurk among standard research practices in this area.This project employs crowdsourcing to address these issues. It draws on replication, deliberation, meta-analysis and harnessing the power of many minds at once. The Crowdsourced Replication Initiative carries two main goals, (a) to better investigate the linkage between immigration and social policy preferences across countries, and (b) to develop crowdsourcing as a social science method. The Executive Report provides short reviews of the area of social policy preferences and immigration, and the methods and impetus behind crowdsourcing plus a description of the entire project. Three main areas of findings will appear in three papers, that are registered as PAPs or in process

    Propagation and Dispersion of Electrostatic Waves in the ionospheric E region

    No full text
    International audienceLow-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity
    • 

    corecore