819 research outputs found

    Hidden potential in predicting wintertime temperature anomalies in the Northern Hemisphere

    Get PDF
    Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO

    Hidden Potential in Predicting Wintertime Temperature Anomalies in the Northern Hemisphere

    Get PDF
    Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO-dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi-model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi-model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO

    Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century

    Get PDF
    Arctic coastal erosion damages infrastructure, threatens coastal communities and releases organic carbon from permafrost. However, the magnitude, timing and sensitivity of coastal erosion increase to global warming remain unknown. Here we project the Arctic-mean erosion rate to increase and very likely exceed its historical range of variability before the end of the century in a wide range of emission scenarios. The sensitivity of erosion to warming roughly doubles, reaching 0.4–0.8 m yr−1 °C−1 and 2.3–4.2 TgC yr−1 °C−1 by the end of the century. We develop a simplified semi-empirical model to produce twenty-first-century pan-Arctic coastal erosion rate projections. Our results will inform policymakers on coastal conservation and socioeconomic planning, and organic carbon flux projections lay out the path for future work to investigate the impact of Arctic coastal erosion on the changing Arctic Ocean, its role as a global carbon sink, and the permafrost–carbon feedback. © 2022, The Author(s)

    Flow Phase Diagram for the Helium Superfluids

    Full text link
    The flow phase diagram for He II and 3^3He-B is established and discussed based on available experimental data and the theory of Volovik [JETP Letters {\bf{78}} (2003) 553]. The effective temperature - dependent but scale - independent Reynolds number Reeff=1/q=(1+α′)/αRe_{eff}=1/q=(1+\alpha')/\alpha, where α\alpha and α′\alpha' are the mutual friction parameters and the superfluid Reynolds number characterizing the circulation of the superfluid component in units of the circulation quantum are used as the dynamic parameters. In particular, the flow diagram allows identification of experimentally observed turbulent states I and II in counterflowing He II with the turbulent regimes suggested by Volovik.Comment: 2 figure

    Annotation and analysis of 10,000 expressed sequence tags from developing mouse eye and adult retina

    Full text link
    Abstract Background As a biomarker of cellular activities, the transcriptome of a specific tissue or cell type during development and disease is of great biomedical interest. We have generated and analyzed 10,000 expressed sequence tags (ESTs) from three mouse eye tissue cDNA libraries: embryonic day 15.5 (M15E) eye, postnatal day 2 (M2PN) eye and adult retina (MRA). Results Annotation of 8,633 non-mitochondrial and non-ribosomal high-quality ESTs revealed that 57% of the sequences represent known genes and 43% are unknown or novel ESTs, with M15E having the highest percentage of novel ESTs. Of these, 2,361 ESTs correspond to 747 unique genes and the remaining 6,272 are represented only once. Phototransduction genes are preferentially identified in MRA, whereas transcripts for cell structure and regulatory proteins are highly expressed in the developing eye. Map locations of human orthologs of known genes uncovered a high density of ocular genes on chromosome 17, and identified 277 genes in the critical regions of 37 retinal disease loci. In silico expression profiling identified 210 genes and/or ESTs over-expressed in the eye; of these, more than 26 are known to have vital retinal function. Comparisons between libraries provided a list of temporally regulated genes and/or ESTs. A few of these were validated by qRT-PCR analysis. Conclusions Our studies present a large number of potentially interesting genes for biological investigation, and the annotated EST set provides a useful resource for microarray and functional genomic studies.http://deepblue.lib.umich.edu/bitstream/2027.42/112906/1/13059_2003_Article_574.pd

    Genuine Counterfactual Communication with a Nanophotonic Processor

    Full text link
    In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. The first suggested protocol not only required thousands of ideal optical components, but also resulted in a so-called "weak trace" of the particles having travelled from Bob to Alice, calling the scalability and counterfactuality of previous proposals and experiments into question. Here we overcome these challenges, implementing a new protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly-efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of genuinely trace-free counterfactual communication, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, with neither post-selection nor a weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.Comment: 6 pages, 4 figure

    Soliton equations and the zero curvature condition in noncommutative geometry

    Get PDF
    Familiar nonlinear and in particular soliton equations arise as zero curvature conditions for GL(1,R) connections with noncommutative differential calculi. The Burgers equation is formulated in this way and the Cole-Hopf transformation for it attains the interpretation of a transformation of the connection to a pure gauge in this mathematical framework. The KdV, modified KdV equation and the Miura transformation are obtained jointly in a similar setting and a rather straightforward generalization leads to the KP and a modified KP equation. Furthermore, a differential calculus associated with the Boussinesq equation is derived from the KP calculus.Comment: Latex, 10 page

    The present and future system for measuring the Atlantic meridional overturning circulation and heat transport

    Get PDF
    of the global combined atmosphere-ocean heat flux and so is important for the mean climate of the Atlantic sector of the Northern Hemisphere. This meridional heat flux is accomplished by both the Atlantic Meridional Overturning Circulation (AMOC) and by basin-wide horizontal gyre circulations. In the North Atlantic subtropical latitudes the AMOC dominates the meridional heat flux, while in subpolar latitudes and in the subtropical South Atlantic the gyre circulations are also important. Climate models suggest the AMOC will slow over the coming decades as the earth warms, causing widespread cooling in the Northern hemisphere and additional sea-level rise. Monitoring systems for selected components of the AMOC have been in place in some areas for decades, nevertheless the present observational network provides only a partial view of the AMOC, and does not unambiguously resolve the full variability of the circulation. Additional observations, building on existing measurements, are required to more completely quantify the Atlantic meridional heat transport. A basin-wide monitoring array along 26.5°N has been continuously measuring the strength and vertical structure of the AMOC and meridional heat transport since March 31, 2004. The array has demonstrated its ability to observe the AMOC variability at that latitude and also a variety of surprising variability that will require substantially longer time series to understand fully. Here we propose monitoring the Atlantic meridional heat transport throughout the Atlantic at selected critical latitudes that have already been identified as regions of interest for the study of deep water formation and the strength of the subpolar gyre, transport variability of the Deep Western Boundary Current (DWBC) as well as the upper limb of the AMOC, and inter-ocean and intrabasin exchanges with the ultimate goal of determining regional and global controls for the AMOC in the North and South Atlantic Oceans. These new arrays will continuously measure the full depth, basin-wide or choke-point circulation and heat transport at a number of latitudes, to establish the dynamics and variability at each latitude and then their meridional connectivity. Modeling studies indicate that adaptations of the 26.5°N type of array may provide successful AMOC monitoring at other latitudes. However, further analysis and the development of new technologies will be needed to optimize cost effective systems for providing long term monitoring and data recovery at climate time scales. These arrays will provide benchmark observations of the AMOC that are fundamental for assimilation, initialization, and the verification of coupled hindcast/forecast climate models
    • …
    corecore