
1.  Introduction
The North Atlantic sector has an important impact on weather regimes and the development of wintertime temper-
ature anomalies in Europe and North America (Hertig & Jacobeit, 2014; Vautard, 1990). While ocean and atmos-
phere act on different time scales, they are both important for the formation of specific winter conditions (Cassou 
et al., 2004; Rodwell et al., 1999). The large-scale coupled ocean-atmosphere dynamics is well represented by the 
variability of sea level pressure (SLP) over the North Atlantic, known as the North Atlantic Oscillation (NAO). 
The winter NAO regimes impact the European wintertime weather not only in terms of the seasonally averaged 
values of temperature or precipitation (Hurrell, 1995; Hurrell et al., 2003; Thompson et al., 2003), but also in 
terms of the occurrence of extreme weather conditions (Jung et al., 2011a; Maidens et al., 2013). For example, the 
extremely cold winter 2009/2010 in Northern and Western Europe was attributed to the record persistence of  the 
negative NAO phase (Cattiaux et al., 2010).

While ensemble-based dynamical seasonal prediction systems (hereafter SPSs) are known to skilfully predict the 
winter NAO index for a season ahead (Athanasiadis et al., 2017; O’Reilly et al., 2017), they are less successful in 
the prediction of the NAO-dependent temperature anomalies over the North-Atlantic sector. Increasing ensemble 
size, on the one hand, improves the prediction skill of the NAO (Butler et al., 2016). On the other hand, this 
improvement is limited by the ability of models to accurately reproduce the sources of the NAO predictability 
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(Årthun et al., 2017; Jung et al., 2011b). Recently, a multi-model approach demonstrates an ability to increase the 
NAO prediction skill by combining several prediction systems into one large ensemble (Athanasiadis et al., 2017). 
However, for already large ensembles, with about 30–40 members, a further increase of the ensemble size does 
not only demonstrate any potential for a further significant increase in the prediction skill of the winter NAO 
but also tends to suppress the variability of predicted NAO index. This can be partly attributed to well-known 
underestimation of the signal-to-noise ratio in prediction systems (Mayer et al., 2021; Scaife & Smith, 2018) 
which leads to an underestimation of predicted variability in the ensemble mean. In turn, the strength of the 
winter NAO phase directly impacts the formation of temperature anomalies, both for positive and negative NAO 
phases (Heape et al., 2013). Therefore, the low amplitude of the predicted ensemble mean NAO phase decouples 
the NAO from the formation of temperature anomaly and will produce only weakly pronounced wintertime 
temperature anomalies.

Here, we demonstrate a hidden potential of existing SPSs in skillful predicting the wintertime temperature anom-
alies in the Northern Hemisphere by increasing the variability of predicted NAO using a multi-model ensem-
ble subsampling approach. Instead of following the traditional practice of averaging all ensemble members, we 
make use of the intrinsic memory of the Earth system, analyzing initial autumn conditions to identify ensemble 
members with well-established relationships between initial autumn conditions and the winter NAO (Dobrynin 
et al., 2018). Only these ensemble members are considered afterward in a subsampled ensemble mean, result-
ing in increased variability and prediction skill of the winter NAO index. We make a step forward from the 
NAO index prediction and predict wintertime temperature anomalies in the Northern Hemisphere using the 
well-predicted winter NAO index as a criterion for subsampling of a large dynamical ensemble. This reinforces 
the link between the NAO and temperature anomalies and significantly improves the prediction skill of temper-
ature in the Northern Hemisphere.

2.  Prediction Systems, Data, and Methods
2.1.  Copernicus Climate Change Service Multi-Model Ensemble

In this study, we use a multi-model ensemble built from five SPSs contributing to Copernicus Climate Change 
Service (C3S) (hereafter C3S ensemble). The C3S ensemble covers the period from 1994 to 2014 and consists 
of 138 members provided by the Deutsche Wetterdienst (DWD GCFS2.0-v20171123, 30 members), UK Met 
Office (UKMO HadGEM3-GC2.0-v20150825, 28 members), European Centre for Medium-Range Weather 
Forecasts (ECMWF System4, 25 members), Meteo France (System6-v20170501, 15 members), and Centro 
Euro-Mediterraneo sui Cambiamenti Climatici (CMCC-CM2-v20160423, 40 members). All members are 
combined in one ensemble of 138 members without implementation of a bias correction procedure.

2.2.  NAO Index

The NAO index is calculated using an empirical orthogonal function (EOF) analysis (Barnston & Livezey, 1987). 
For all systems and for the ERA-Interim, seasonal (DJF) means of SLP are calculated from monthly means prior 
to the EOF analysis. The region of SLP data is limited to the latitude range 20°N–90°N and to the longitude 
range 90°W to 60°E. The EOF is calculated for every SPS from all respective ensemble members merged along 
the time axis into one vector. This approach of EOF calculation allows us to represent the entire ensemble in one 
ensemble-common EOF pattern. Further, taking into account a relatively short period of hindcasts, this approach 
is more reliable than conducting the EOF calculation for individual ensemble members separately. The first 
principal component of SLP is then decomposed back to the number of ensemble members, building an indi-
vidual time series for each ensemble member. The first principal component of SLP represents the NAO index 
(Kutzbach, 1970). All NAO indices are normalized by their respective standard deviations. The ERA-Interim 
NAO index is used as a reference for comparisons with other systems.

2.3.  Predictors of the NAO

We use monthly mean data of SLP and 2-m air temperature (T2m) provided by the C3S ensemble. Additionally, 
SLP, T2m, 100 hPa level air temperature (T100), sea surface temperature in the North Atlantic (SST), Arctic sea 
ice concentration (SIC) and snow cover in Eurasia (SNC) data are used from the ERA-Interim reanalysis (Dee 
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et al., 2011). While seasonal, averaged over December, January, and February (DJF), means of SLP and T2m 
are used for the evaluation of model results, October T100, SST and SNC, and September SIC means repre-
sent the autumn predictors of the winter NAO index. All four autumn predictors were previously identified and 
reported as robust and significant in terms of correlation with the winter NAO: T100 by Domeisen et al. (2015) 
and Butler and Polvani (2011); SST by Czaja and Frankignoul (2002) and Wang et al. (2017); SNC by Cohen 
and Jones (2011) and Peings et al. (2013); and SIC by Strong et al. (2009) and Sun et al. (2015). Additionally, 
in support of predictor choice, in our previous study (Dobrynin et al., 2016) we demonstrated results of subsam-
pling cross-validation, using different sets of selected periods from 1981 to 2016. Moreover, in our recent study 
on subsampling using other, in addition to NAO, modes of SLP variability (see Supporting Information P.1. in 
Dalelane et al., 2020), we show that, indeed, those predictors are robust also for an extended period of analysis 
from 1958 until now.

Generally, the robustness of predictors depends on the actual climate state characterized by a combination of 
the El Niño-Southern Oscillation, the Arctic oscillation, and the NAO. Some of their phases are modulated by 
decadal or even by multi-decadal processes and might favorite a predictor and predictability for a particular period 
(e.g., O’Reilly et al., 2017; Weisheimer et al., 2017). For example, Kolstad and Screen (2019) reported a strong 
variability of correlation between wintertime NAO and autumn ice conditions in the Arctic under pre-industrial 
and historical climate. Detailed discussion on the robustness of predictors for the future climate state, specifically 
with reduced or in absence of sea ice in the Arctic, is out of the scope of this study. However, it is likely that the 
polar regions will keep their role in the modulation of atmospheric circulation, but the link (predictor) might need 
reconsideration. Considering the possible non-stationarity of predictors, we use a running training period, cover-
ing the full available until the year of the forecast period. This approach keeps predictors dynamic and adaptive 
to the actual climate state.

Originally, autumn predictors were provided by an assimilation simulation used for hindcast initialization. Since 
assimilation simulations are not available for all C3S SPSs, in this study we use October T100, SST and SNC, 
and September SIC from ERA-Interim as predictors of first-guess of the next DJF winter season NAO index for 
ensemble subsampling as adopted from Dobrynin et al. (2018).

2.4.  Subsampling of the C3S Multi-Model Ensemble

Here, we use two approaches for subsampling of the C3S multi-model ensemble in real forecast test: random and 
teleconnection-based. For both approaches, the range of ensemble sizes was varied from 3 to 138 for a period of 
real forecast test from 2001 to 2014. In the first random statistical approach, 1,000 samples of members (combi-
nations) for each given ensemble size were analyzed. In the second approach, we use a teleconnection-based 
subsampling technique, suggested by Dobrynin et  al.  (2018) and generalized by Düsterhus  (2020), selecting 
only ensemble members with well-represented links between the autumn NAO predictors and the winter NAO 
index. This requires a statistical estimation of the first-guess NAO value, therefore it can be considered as a 
statistical-dynamical approach. We construct a first-guess DJF NAO index from the ERA-Interim de-trended 
time series of the area-weighted mean over regions with significant positive correlations between each autumn 
predictor and DJF NAO (Dobrynin et al., 2018). The significance of correlation is calculated using a bootstrap-
ping approach (e.g., Efron & Tibshirani,  1994) with 500 samples at a given confidence level. We use train-
ing  periods from 1994 until the year previous to forecasted year. Thereby, we calculate sets of four first-guess 
NAO values for subsampling of the C3S multi-model ensemble.

We perform a sensitivity analysis aiming at dependency of the NAO skill to ensemble size for both approaches. 
By using all four predictors in teleconnection-based approaches, it is likely that one ensemble member will be 
selected by more than one predictor. We use each selected ensemble member only once and remove duplicates 
from subsampled ensemble. This, in turn, means, that the number of selected members can be different from year 
to year, even with a fixed number of members selected by each predictor. Therefore, in the sensitivity tests of 
the NAO skill versus ensemble size, we use only one SST-predictor in the teleconnection-based approach, as a 
guaranty of the constant number of selected member for consistency between random and teleconnection-based 
approaches.
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The subsampling technique was also applied for individual C3S models. For this, the number of selected members 
per predictor was limited to 13, 8, 10, 5, and 9 members for CMCC, ECMWF, DWD, Meteo France, and UKMO 
system respectively.

2.5.  Results Evaluation

Results of SPSs are evaluated over two periods: a hindcast from 1994 to 2014, and a forecast period from 2001 to 
2014. Prediction skill for both periods is calculated as the correlation coefficient between the respective ensemble 
mean and the ERA-interim. For the hindcast period in multi-model ensemble the prediction skill for DJF NAO 
and T2m is calculated. For each model separately, only prediction skill for DJF NAO is calculated. For the fore-
cast period, we mimic a real forecast calculating the NAO index and T2m anomalies individually for each year. 
Values of the NAO index and T2m for each particular year are then combined into time series. T2m anomalies 
for Northern Hemisphere and area-weighted regional mean anomalies for two regions shown in Figure 1d Central 
Europe (45N–60N, 10W–30E) and Eastern Canada (45N–60N, 90W–60W) are calculated by subtracting a mean 
value of T2m over a period from 1994 until 2014 or until each particular year in a real forecast test, depending 
on the end of the forecast period.

Figure 1.  Prediction skill of the Copernicus Climate Change Service (C3S) ensemble and anomalies of wintertime temperature. (a) C3S ensemble prediction skill 
of 2-m temperature calculated for a period from 1994 to 2014 as compared to ERA-Interim; (b and c) December, January, and February (DJF) anomalies of 2-m 
temperature for a strong positive (2007) and negative (2010) North Atlantic Oscillation (NAO) phase as calculated from C3S ensemble; (d) correlation map between 
DJF 2-m temperature and NAO index in ERA-Interim, two regions of specific interest Central Europe (45N–60N, 10W–30 E) and Eastern Canada (45N–60N, 
90W–60W) are shown; (e and f) same as (b and c) but from ERA-Interim. Regions that are significant at the 95% confidence level are indicated by dots on the maps in 
the left column.
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For comparison between statistical and statistical-dynamical subsampling methods, we calculated the NAO index 
as a mean value over four ERA-Interim predictors. We mimic a real statistical forecast for three periods: from 
1985 to 2014, with a training period starting from 1979 and until the year previous to the forecasted year, from 
1985 to 1999 starting from 1979, and from 2001 to 2014 starting from 1979. Additionally, we calculated the 
first-guess NAO index for the real statistical forecast test for 2001 to 2014 starting from 1994, which is directly 
comparable to a dynamical ensemble.

3.  C3S Multi-Model Ensemble Prediction of Air Temperature
Prediction skill of the C3S ensemble for 2-m air temperature in the Northern Hemisphere demonstrates high skill 
in the North Pacific sector, moderate skill in the eastern part of North America and in the North Atlantic sector, 
and low skill in Europe (Figure 1a). The prediction skill for the winter NAO is represented by a correlation of 0.39 
between the C3S ensemble mean (hereafter C3S-mean) and the ERA-Interim NAO index. The effect of change 
of winter NAO phase on temperature (hereafter temperature response) is well known and can be demonstrated 
by a correlation between the DJF temperature and NAO index. A dipole structure with a negative correlation in 
the North Atlantic sector and positive correlation over Eurasia (Figure 1d) highlights areas where cold and warm 
temperature anomalies can be formed depending on the NAO phase.

However, despite a moderate NAO prediction skill, it appears that for the strong positive and negative NAO 
states in 2007 and 2010 the ensemble mean temperature anomalies are similar in terms of weakly pronounced 
amplitude (Figures 1b and 1c) in regions where a strong effect on temperature is expected, for example, in Central 
Europe. This can be mainly attributed to two reasons. The first reason is the reduced ability of model systems to 
simulate temperature response dependent on NAO phase by individual ensemble members. The second reason 
is the fact that ensemble mean tends to suppress the variability, comparing to an individual ensemble member or 
the observation. The first reason might be overcome by further model development and initialization methods for 
prediction systems. The second reason highlights the need to increase the amplitude of ensemble mean tempera-
ture anomaly in response to NAO phases by reducing ensemble size and at the same time the noise, as suggested 
in this study.

Comparing to ERA-Interim (Figure 1d), the temperature response of the C3S ensemble (Figure S1f in Supporting 
Information S1) has a similar dipole structure combining all individual models (Figures S1a–S1e in Supporting 
Information S1). However, the negative correlation in the North Atlantic sector and positive correlation over 
Eurasia is underestimated. Simultaneously, a positive correlation over North America and the Pacific Ocean is 
overestimated. Overall, the well-pronounced temperature response in the C3S ensemble demonstrates a potential 
for forming temperature anomalies following changes of the NAO phase.

4.  Skill and Variability Estimated From Subsampling Approaches
The C3S ensemble underestimates the inter-annual variability of the NAO index, calculated as a standard devi-
ation (hereafter STD) of the ensemble mean (0.22). The NAO STD tends to decrease with an increase of the 
ensemble size (Figure 2a, gray dash line). Therefore, the full range of variability will not be covered even by 
the large multi-model ensemble C3S. On the contrary, individual members from each SPSs reproduce very well 
the full range of the ERA-Interim NAO index (Figure 2b). Thus, possible improvement in the variability and 
prediction skill of the NAO index and wintertime temperature can be achieved by ensemble subsampling, that is, 
considering only a part of the entire ensemble. We analyze the prediction skill and variability of the NAO and 
temperature depending on ensemble subsampling size for both random and teleconnection-based subsampling 
approaches, in the real forecast test from 2001 to 2014.

4.1.  Random Versus Teleconnection-Based Subsampling Approach

Random and teleconnection-based subsampling approaches have two different goals. While the random approach 
provides an estimation of a possible change of the prediction skill and variability arising from increasing of 
ensemble size only, the teleconnection-based approach demonstrates an added value of including of initial 
conditions analysis into ensemble subsampling. For both regions of specific interest Central Europe and Eastern 
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Canada (shown in Figure 1d), we analyze the time series of the DJF NAO and wintertime averaged 2-m air 
temperature, mimicking the real forecast for a period from 2001 to 2014.

The prediction skill of the winter NAO of the full 138-member C3S ensemble in a random subsampling approach 
follows a logarithmic-like behavior with a rapid increase of prediction skill from about 0.20 for 3-member ensem-
ble to 0.40 for about one-third of the ensemble size (Figure 2a, black dash line). Afterward, the added value of 
the remaining ensemble members is limited to 0.09. This results in a skill of 0.49 for the full C3S ensemble for 
a period from 2001 to 2014. In contrast, the teleconnection-based subsampling approach demonstrates a stable 
high level of prediction skill of about 0.90 starting from a 3-member ensemble to an about 70-member ensemble 
(Figure 2a, black solid line). Afterward, the skill is decreasing down to the C3S ensemble mean value of 0.49. 
The range of the NAO prediction skill varies from 0.17 to 0.48 when all systems are individually considered 
(Figure  S5 in Supporting Information S1). The subsampling improves NAO prediction skill for each individual 
system to a range from 0.85 to 0.90 even for the systems with initially low NAO skill (Figures S5 and S6 in 
Supporting Information S1).

Figure 2.  Prediction skill, variability and subsampling of the multi-model ensemble Copernicus Climate Change Service (C3S) for the North Atlantic Oscillation 
(NAO) index in a real forecast test from 2001 to 2014 (a) prediction skill (black lines) (b) and variability denoted as standard deviation (standard deviation [STD], gray 
lines) calculated for the C3S ensemble using two approaches: random selection of ensemble members (dashed lines) and NAO teleconnection-based subsampling (as in 
Dobrynin et al. (2018), but with SST predictor only, solid lines); (b) subsampling of the C3S ensemble for the winter NAO using all predictors (orange line) comparing 
to the C3S ensemble means (gray lines) and the ERA-Interim (black lines). The shaded area represents the sampling error for the random selection approach. Open 
circles denote each C3S ensemble member, filled circles indicate 46 subsampled due to NAO teleconnection-based approach ensemble members.

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021G

L
095063 by M

PI 348 M
eteorology, W

iley O
nline L

ibrary on [28/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

DOBRYNIN ET AL.

10.1029/2021GL095063

7 of 11

Variability of the winter NAO index, denoted as the STD of the ensemble mean, in both approaches decreases 
with an increase of the ensemble size. However, while in random subsampling approach STD decreases by half 
within 20 ensemble members from 0.6 to 0.3 (Figure 2a, gray dash line), the teleconnection-based subsampling 
provides a stable high, more than 0.6, level of STD for 50 ensemble members (Figure 2a, gray solid line).

For wintertime averaged 2-m air temperature, the random subsampling approach demonstrates an increase of 
prediction skill as a function of ensemble size, similar to the winter NAO (Figure  3a, dash lines). Notable, 
the rapid growth of skill is also limited to about one-third of the ensemble size for both regions, but it results 
in a different ensemble mean prediction skill of 0.25 for Central Europe and 0.69 for Eastern Canada. The 
teleconnection-based subsampling for the air temperature uses the same members as selected for the winter NAO, 
therefore a clear difference appears between the prediction skill for Central Europe and Eastern Canada as for 
a region of strong and weak NAO impact respectively. For Eastern Canada, the high level of prediction skill of 
about 0.7 can be achieved already by a small ensemble size. This skill demonstrates low sensitivity to variations 
of prediction skill of the winter NAO and stays on the same level as for the full C3S ensemble mean (Figure 3a, 
blue solid line).

In contrast, for air temperature over Central Europe, the prediction skill tends to follow a decrease of the NAO 
prediction skill starting from about two-thirds of the ensemble size (Figure 3a, red solid line).

Note that, high skill is not the only criterion for selecting the optimal number of subsampled members. The more 
important reason is that a well-filled probability density function (PDF) of the subsampled ensemble is required 
for stabilization of prediction skill and ensemble mean statistics. A smoother ensemble PDF such as created 
by randomly increasing the ensemble members, is not necessarily beneficial for increasing skill. In contrast 
to this, subsampling does not act as a random manipulation of the PDF, but more like a filter, for example, as 
a band-pass filter. As such, it does not necessarily decrease the overall smoothness of the PDF, but selects the 
relevant sections of the PDF. Therefore, high 2-m temperature skill for 3 members and high skill variability up to 
about 30 members (Figure 3a, red solid line) can be explained by stabilization of skill by filling ensemble PDF 
with more members toward an optimal number of subsampled members. This has been further demonstrated and 
investigated by Düsterhus (2020), who showed that a filtered model PDF, within a system similar to the subsam-
pling method applied in this manuscript, can be beneficial for higher prediction skill.

4.2.  Implementation of Teleconection-Based Subsampling Approach for Predicting of Air Temperature 
in Central Europe

We focus now on Central Europe and analyze the prediction skill of regionally averaged air temperature anomalies 
in a real forecast test using the teleconnection-based subsampling approach for a period from 2001 to 2014. The 
number of selected ensemble members is limited to one-third of the C3S ensemble size, which is 46 members.

The subsampled 46-member C3S ensemble shows a significant increase both in NAO prediction skill from 0.49 
to 0.90 and in the variability (STD) of the ensemble mean NAO index from 0.22 to 0.57 (Figure 2b). Following 
the increase of the NAO skill and variability, the air temperature skill is increased from 0.25 to a significant value 
of 0.66 (Figure 3b). The variability (STD) of the air temperature is also improved from 0.19 to 0.41. Corrections 
of the NAO phases due to subsampling are most notable for years with relatively strong NAO phase, such as for 
example, in 2005–2007 and 2010 (Figure 2b). In a more general context, the teleconnection-based subsampling 
approach significantly improves the C3S ensemble prediction skill of the SLP and air temperature over an essen-
tial part of the Northern Hemisphere (Figure S2 in Supporting Information S1). For the air temperature, the areas 
with mostly improved prediction skill (up to 0.8) are located in Eurasia (Figure S2 in Supporting Information S1). 
Over these areas, a better representation of the wintertime temperature anomalies related to NAO phases can be 
expected.

4.3.  Statistical Versus Statistical-Dynamical Prediction

For comparison to the dynamical subsampled C3S ensemble, we calculate statistical first-guess NAO prediction 
from all four NAO predictors based on the ERA-Interim only (Figures S3 and S4 in Supporting Information S1). 
It appears that the length of the training period (TP, i.e., number of years before forecast year) affects the NAO 
prediction skill. For example, for a short TP of 6–20 years starting from 1979 and for a following forecast period 
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Figure 3.
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from 1985 to 1999 (Figure S4b in Supporting Information S1), the NAO skill is 0.91, while for the full forecast 
period from 1985 to 2014 with a TP of 6–35 years the value drops to 0.86 (Figure S4a in Supporting Informa-
tion S1). For a short forecast period from 2001 to 2014 with a long TP of 22–35 years starting from 1979, the 
NAO prediction skill is 0.82 (Figure S4c in Supporting Information S1). With a short TP of 7–20 years starting 
from 1994 (not shown here), the NAO skill is 0.92 – higher than from dynamical subsampled C3S ensemble for 
the same period. This can be partly attributed to equal consideration of all systems within the C3S ensemble in 
one multi-model ensemble, independently of performance in predicting winter NAO for each individual model. 
Analyzing C3S's models individually, it appears that the subsampling has a different level of improvement of 
the winter NAO prediction skill for less and more skillful models (Figure S5 in Supporting Information S1). We 
notice that the final skill is partly determined by the initial model skill and that a higher prediction skill can be 
achieved for a more skillful system and such high skill cannot be achieved for a less skillful system due to subsam-
pling (Figures S5 and S6 in Supporting Information S1). Most likely a combination of, for example, more skillful 
or systems with similar ensemble size, will have an effect on the NAO prediction skill of dynamical subsampled 
C3S ensemble (not shown here).

4.4.  Improved Prediction of Wintertime Temperature Anomalies

Finally, we calculated wintertime temperature anomalies for two selected years: 2007 with a strong positive 
NAO phase, and 2010 with a strong negative phase from the subsampled C3S ensemble. As opposite to the 
C3S ensemble mean (Figures 1b and 1c), the C3S subsampled mean predicts the temperature anomalies with 
a clear characteristic structure for a positive NAO phase in 2007 and negative NAO phase in 2010 (Figures 3c 
and 3d). Note, that the area affected by better prediction of the NAO covers not only the North Atlantic sector, 
but also an essential part of Eurasia. Predicted temperature anomalies have a similar structure as compared to the 
ERA-Interim anomalies (Figures 1e and 1f). However, the exact prediction of the values of temperature anomaly 
at local scales remains challenging.

5.  Conclusions
In summary, we found that the existing C3S operational prediction systems, being combined in a multi-model 
subsampled ensemble, can skilfully predict winter temperature anomalies in Central Europe and over an essential 
part of the Northern Hemisphere for a season ahead. Moreover, the C3S subsampled ensemble can provide a very 
high NAO prediction skill of 0.90. This leads us to the conclusion that the existing operational prediction systems 
do not fully use the potential coming from the large numbers of ensemble members in the prediction of winter-
time temperature. Following a traditional ensemble mean approach, all C3S systems suppress the variability of 
predicted winter NAO index and temperature. From our analysis, we conclude that even a substantial increase of 
the ensemble size will not automatically improve the prediction skill and especially the variability of the NAO 
and temperature. Instead, the implementation of the NAO teleconnection-based subsampling approach to existing 
ensembles improves significantly the prediction skill and variability of the winter NAO index and  temperature 
in the Northern Hemisphere. Notable, and of high importance for applications of subsampling on a hemisphere 
scale, is the conclusion that the improvement of temperature anomalies is focused on the regions of strong NAO 
impact, such as Central Europe. Simultaneously, regions of weak NAO impact, such as Eastern Canada, are not 
affected by subsampling. Moreover, our subsampling approach, being developed for the improvement of seasonal 
prediction of existing prediction systems, highlights also a need for further model development, rethinking 
ensemble generation, and initialization methods toward better representation of the NAO in individual ensemble 
members. This can be beneficial for an improved representation of ensemble mean variability of NAO and related 
parameters, keeping a realistic ensemble size.

Figure 3.  Prediction skill and subsampling of Copernicus Climate Change Service (C3S) ensemble for the wintertime temperature in a real forecast test from 2001 
to 2014. (a) prediction skill calculated for the C3S ensemble for two regional means in Central Europe (red) and in the Eastern Canada (blue) using two approaches: 
random selection of ensemble members (dashed lines) and North Atlantic Oscillation (NAO) teleconnection-based subsampling (as in Dobrynin et al. (2018), but with 
SST predictor only, solid lines); (b) subsampling of the C3S ensemble in Central Europe using all predictors (orange line) comparing to the C3S ensemble means (gray 
lines) and the ERA-Interim (black lines). Open circles denote each C3S ensemble member, filled circles indicate 46 subsampled due to NAO teleconnection-based 
approach ensemble members; (c–d) DJF anomalies of 2-m temperature for a strong positive (2007) and negative (2010) NAO phase as calculated from subsampled C3S 
ensemble.
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Data Availability Statement
Seasonal forecasts, used in this study, provided by the Deutsche Wetterdienst, UK Met Office, European Centre 
for Medium-Range Weather Forecasts, Meteo France, and Centro Euro-Mediterraneo sui Cambiamenti Climatici 
for the period from 1994 to 2014 are available from Copernicus Climate Change Service (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=overview). ERA-Interim data are available 
from ECMWF's at www.ecmwf.int/en/forecasts/datasets.
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