37 research outputs found

    Diagnostic and methodological evaluation of studies on the urinary shedding of SARS-CoV-2, compared to stool and serum: A systematic review and meta-analysis

    Get PDF
    Investigating the infectivity of body fluid can be useful for preventative measures in the community and ensuring safety in the operating rooms and on the laboratory practices. We performed a literature search of clinical trials, cohorts, and case series using PubMed/MEDLINE, Google Scholar, and Cochrane library, and downloadable database of CDC. We excluded case reports and searched all-language articles for review and repeated until the final drafting. The search protocol was registered in the PROSPERO database. Thirty studies with urinary sampling for viral shedding were included. A total number of 1,271 patients were enrolled initially, among which 569 patients had undergone urinary testing. Nine studies observed urinary viral shedding in urine from 41 patients. The total incidence of urinary SARS-CoV-2 shedding was 8, compared to 21.3 and 39.5 for blood and stool, respectively. The summarized risk ratio (RR) estimates for urine positive rates compared to the pharyngeal rate was 0.08. The pertaining RR urine compared to blood and stool positive rates were 0.20 and 0.33, respectively. Our review concludes that not only the SARS-CoV-2 can be excreted in the urine in eight percent of patients but also its incidence may have associations with the severity of the systemic disease, ICU admission, and fatality rates. Moreover, the findings in our review suggest that a larger population size may reveal more positive urinary cases possibly by minimizing biases

    Cotton in the new millennium: advances, economics, perceptions and problems

    Get PDF
    Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear. This issue of Textile Progress aims to: i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered. ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade. iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included. iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre

    Distributions and seasonal variability of dissolved organic nitrogen in two estuaries in SW England

    No full text
    Nitrogen loadings to coastal waters have increased over the last century, resulting in deterioration in water quality. In this study we investigated the distributions and seasonality of dissolved organic nitrogen (DON), and its relationship to total dissolved nitrogen (TDN), for two anthropogenically influenced estuarine systems in southwest England. Concentrations of DON in both estuaries were generally &lt; 80 ?M. DON showed non-conservative distributions, resulting from external and internal inputs and in situ reactivity. DON contributed 38 ± 22% (range 4–79%, Yealm) and 36 ± 17% (range 4–84%, Plym) to the TDN pool, with lower values generally observed in the fresher samples relative to the more saline samples. DON was a larger fraction of the TDN pool during the summer and autumn relative to winter and spring, indicating the influence of bacterioplankton release on nitrogen cycling in the estuaries. Ammonification and nitrification were observed in the estuaries, processes which were reproduced in incubation experiments using bioreactors. The bioreactor experiments showed that 12% h? 1 of the DON flux from the River Plym may be available to bacteria, indicating significant removal of DON during the residence time of the water in the estuary (a few days). The bioavailable nature of the DON means that this N fraction significantly adds to the eutrophication burden of the receiving coastal waters, and therefore cannot be ignored in environmental assessments.<br/

    Relative-Phase And Time-Delay Maps All Over The Emission Cone Of Hyperentangled Photon Source

    No full text
    Realizing high flux of hyperentangled photons requires collecting photon pairs simultaneously entangled in multiple degrees of freedom over relatively wide spectral and angular emission ranges. We consider the hyperentangled photons produced by superimposing noncollinear spontaneous parametric down conversion (SPDC) emissions of two crossed and coherently pumped nonlinear crystals. We present an approach for determining the directional-spectral relative-phase and time-delay maps of hyperentangled photons all over the SPDC emission cone. A vectorial representation is adopted for all parameters of concern. This enables us to examine unconventional arrangements such as the autocompensation of relative-phase and time-delay via oblique pump incidence. While prior works often adopt first-order approximation, it is shown that the actual directional relative-phase map is very well approximated by a quadratic function of the polar angle of the two-photon emission while negligibly varying with the azimuthal angle

    Penicillosides A and B: new cerebrosides from the marine-derived fungus Penicillium species

    Get PDF
    In the course of our ongoing effort to identify bioactive compounds from marine-derived fungi, the marine fungus, Penicillium species was isolated from the Red Sea tunicate, Didemnum species. Two new cerebrosides, penicillosides A and B were isolated from the marine-derived fungus, Penicillium species using different chromatographic methods. Their structures were established by different spectroscopic data including 1D (1H NMR and 13C NMR) and 2D NMR (COSY, HSQC, and HMBC) studies as well as high-resolution mass spectral data. Penicilloside A displayed antifungal activity against Candida albicans while penicilloside B illustrated antibacterial activities against Staphylococcus aureus and Escherichia coli in the agar diffusion assay. Additionally, both compounds showed weak activity against HeLa cells. Keywords: Didemnum, Penicillum, Cerebrosides, Penicillosides, Antimicrobial activity, HeLa cell

    Determination of dissolved organic nitrogen in natural waters using high temperature catalytic oxidation

    No full text
    Studies on nitrogen in natural waters have generally focussed on dissolved inorganic nitrogen (DIN), primarily because of relative ease of analysis and the important influence of DIN on water quality. Advances in analytical techniques now permit the systematic study of dissolved organic nitrogen (DON), and this work has shown that DON is quantitatively significant in many waters. This article describes the sampling and analytical protocols required for rapid, precise and reliable determinations of DON, involving high-temperature catalytic oxidation (HTCO), coupled to chemiluminescence detection. This approach simultaneously determines dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), and DON is derived by subtraction of DIN measured by colorimetry. The DON determination is simple to perform, exhibits excellent precision (<1 for C and 1.5 for N) and is applicable to a wide range of natural waters. © 2003 Published by Elsevier B.V
    corecore