39 research outputs found

    Changes in Glucose and Glutamine Lymphocyte Metabolisms Induced by Type I Interferon α

    Get PDF
    In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFNα also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFNα are associated with a reduction in glucose and glutamine metabolisms

    Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure

    Get PDF
    Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2006/61523-7, 2006/58460-4]Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) [473251/2009-4, 301519/2008-0, 301867/2010-0]Conselho Nacional de Pesquisa e Desenvolvimento (CNPq

    Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise

    Get PDF
    Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways

    Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice

    No full text
    Background: Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice. Methods: Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET. Untrained wild type and HF mice were used as control. Soleus cross sectional area was evaluated by histochemistry and motor performance by rotarod. 26S proteasome activity was assessed by fluorimetric assay, and components of IGF-I/Akt/mTOR pathway or myostatin pathway by qRT-PCR or immunoblotting. A different subset of mice was used to evaluate the relative contribution of mTOR inhibition (rapamycin) or activation (leucine) on AETinduced changes in muscle mass regulation. Results: AET prevented exercise intolerance and impaired motor performance in HF mice. These effects were associated with attenuation of soleus atrophy. Rapamycin treatment precluded AET effects on soleus mass in HF mice suggesting the involvement of IGF signaling pathway in this response. In fact, AET increased IGF-I Ea and IGF-I Pan mRNA levels, while it reduced myostatin and Smad2 mRNA levels in HF mice. At protein levels, AET prevented reduced expression levels of IGF-I, pAkt (at basal state), as well as, p4E-BP1 and pP70S6K (leucine-stimulated state) in HF mice. Additionally, AET prevented 26S proteasome hyperactivity in HF mice. Conclusions: Taken together, our data provide evidence for AET-induced activation of IGF-I/Akt/mTOR signaling pathway counteracting HF-induced muscle wastin

    Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance.

    No full text
    Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance

    Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice

    No full text
    Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2006/56321-6, 2006/58460-4]Conselho Nacional de Pesquisa e Desenvolvimento, Brazil (CNPq) [473251/2009-4]CNPq Conselho Nacional de Pesquisa e Desenvolvimento (Brazil)CNPq (BPq) [301519/2008-0]CNPqBP
    corecore