307 research outputs found

    Foeto-maternal outcome of HIV-positive pregnant women on highly active antiretroviral therapy

    Get PDF
    Background: A human immunodeficiency virus (HIV) infection in pregnant women is an important medical challenge. There exist varied reports on the foeto-maternal outcome amongst HIV positive women in Africa. Aim: The study was to compare the foeto-maternal outcome among HIV-positive pregnant women who are on HAART with those that are HIV-negative. Methods: A comparative, case-control study of booked HIV-positive and HIV-negative women attending ante-natal clinic (ANC) in Abuja. One hundred and five serial eligible HIV-positive women who booked for ante-natal care between October 8, 2012 and April 29, 2013 were recruited and matched with the control. They were followed up to six weeks post-partum. Live babies were tested for HIV using DNA polymerase chain reaction (PCR) at six weeks post-partum. The data was analysed using statistical package for social science (SPSS) version 16. Chisquare at < 0.05 at confidence level of 95% and Student t-test were used to determine significant association. Results: There were 112 HIV positive pregnant women among 1683 pregnant women during the study period giving a prevalence of 6.7%. The rate of preterm delivery was significantly higher among the HIV positive women (33% Vs 18%, P= 0.005). There was no case of vertical transmission. Conclusion: Maternal HIV infection was significantly associated with preterm delivery. There was no recorded vertical transmission. Strengthening the use of HAART may maintain zero vertical transmission among other precautionary measures. Key words: HIV, HAART, pregnancy outcome, maternal and child health, vertical transmission, booked patien

    Whole-genome association analysis of treatment response in obsessive-compulsive disorder.

    Get PDF
    Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P&lt;10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P&lt;10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Species diversity of Trichoderma in Poland

    Get PDF
    In the present study, we reinvestigate the diversity of Trichoderma in Poland utilizing a combination of morphological and molecular/phylogenetic methods. A total of 170 isolates were collected from six different substrata at 49 sites in Poland. These were divided among 14 taxa as follows: 110 of 170 Trichoderma isolates were identified to the species level by the analysis of their ITS1, ITS2 rDNA sequences as: T. harzianum (43 isolates), T. aggressivum (35), T. citrinoviride (11), T. hamatum (9), T. virens (6), T. longibrachiatum (4), T. polysporum (1), and T. tomentosum (1); 60 isolates belonging to the Viride clade were identified based on a fragment of the translation-elongation factor 1-alpha (tef1) gene as: T. atroviride (20 isolates), T. gamsii (2), T. koningii (17), T. viridescens (13), T. viride (7), and T. koningiopsis (1). Identifications were made using the BLAST interface in TrichOKEY and TrichoBLAST (http://www.isth.info). The most diverse substrata were soil (nine species per 22 isolates) and decaying wood (nine species per 75 isolates). The most abundant species (25%) isolated from all substrata was T. harzianum

    Identification of blood-based molecular signatures for prediction of response and relapse in schizophrenia patients

    Get PDF
    The current inability of psychiatric medicine to objectively select the most appropriate treatment or to predict imminent relapse are major factors contributing to the severity and clinical burden of schizophrenia. We have previously used multiplexed immunoassays to show that schizophrenia patients have a distinctive molecular signature in serum compared with healthy control subjects. In the present study, we used the same approach to measure biomarkers in a population of 77 schizophrenia patients who were followed up over 25 months with four aims: (1) to identify molecules associated with symptom severity in antipsychotic naive and unmedicated patients, (2) to determine biomarker signatures that could predict response over a 6-week treatment period, (3) to identify molecular panels that could predict the time to relapse in a cross-sectional population of patients in remission and (4) to investigate how the biological relapse signature changed throughout the treatment course. This led to identification of molecular signatures that could predict symptom improvement over the first 6 weeks of treatment as well as predict time to relapse in a subset of 18 patients who experienced recurrence of symptoms. This study provides the groundwork for the development of novel objective clinical tests that can help psychiatrists in the clinical management of schizophrenia

    High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

    Get PDF
    The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.National Institutes of Health (U.S.) (MH095096)National Institutes of Health (U.S.) (R01 GM089652

    Analysis of meniscal degeneration and meniscal gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, and 2) to examine gene expression in OA meniscal cells compared to normal meniscal cells.</p> <p>Methods</p> <p>Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens), and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR.</p> <p>Results</p> <p>The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P < 0.0001). Many of the genes classified in the biological processes of immune response, inflammatory response, biomineral formation and cell proliferation, including major histocompatibility complex, class II, DP alpha 1 (<it>HLA-DPA1</it>), integrin, beta 2 (<it>ITGB2</it>), ectonucleotide pyrophosphatase/phosphodiesterase 1 (<it>ENPP1</it>), ankylosis, progressive homolog (<it>ANKH</it>) and fibroblast growth factor 7 (<it>FGF7</it>), were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (<it>ADAMTS5</it>) and prostaglandin E synthase (<it>PTGES</it>), were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific.</p> <p>Conclusion</p> <p>Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel disease markers for early diagnosis of OA.</p

    Heterogeneous activation of the TGFβ pathway in glioblastomas identified by gene expression-based classification using TGFβ-responsive genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TGFβ has emerged as an attractive target for the therapeutic intervention of glioblastomas. Aberrant TGFβ overproduction in glioblastoma and other high-grade gliomas has been reported, however, to date, none of these reports has systematically examined the components of TGFβ signaling to gain a comprehensive view of TGFβ activation in large cohorts of human glioma patients.</p> <p>Methods</p> <p>TGFβ activation in mammalian cells leads to a transcriptional program that typically affects 5–10% of the genes in the genome. To systematically examine the status of TGFβ activation in high-grade glial tumors, we compiled a gene set of transcriptional response to TGFβ stimulation from tissue culture and <it>in vivo </it>animal studies. These genes were used to examine the status of TGFβ activation in high-grade gliomas including a large cohort of glioblastomas. Unsupervised and supervised classification analysis was performed in two independent, publicly available glioma microarray datasets.</p> <p>Results</p> <p>Unsupervised and supervised classification using the TGFβ-responsive gene list in two independent glial tumor gene expression data sets revealed various levels of TGFβ activation in these tumors. Among glioblastomas, one of the most devastating human cancers, two subgroups were identified that showed distinct TGFβ activation patterns as measured from transcriptional responses. Approximately 62% of glioblastoma samples analyzed showed strong TGFβ activation, while the rest showed a weak TGFβ transcriptional response.</p> <p>Conclusion</p> <p>Our findings suggest heterogeneous TGFβ activation in glioblastomas, which may cause potential differences in responses to anti-TGFβ therapies in these two distinct subgroups of glioblastomas patients.</p

    Effect of Levels of Acetate on the Mevalonate Pathway of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a Km value of 132 µM with a Vmax of 1.94 µmol NADPH oxidized minute−1 (mg protein)−1 and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrABb and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease
    corecore