84 research outputs found

    The Expression of a Xylanase Targeted to ER-Protein Bodies Provides a Simple Strategy to Produce Active Insoluble Enzyme Polymers in Tobacco Plants

    Get PDF
    Background Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera) of the maize storage protein Îł-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs). Methodology/Principal Findings Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. Conclusion/Significance In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low-cost bioreactors for industrial purposes.This work was mainly supported by ERA Biotech (www.erabiotech.com). Additional support was supplied by grant SGR 2009/703 funded by the Generalitat de Catalunya (www10.gencat.net) and grants CDS2007/00036 of Consolider Ingenio program and TRA 2009/0124 of TRACE program funded by Ministerio de Ciencia e InovaciĂłn (MICINN, www.micinn.es). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Cuscuta </it>L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.</p> <p>Results</p> <p>Here we present a well-supported phylogeny of <it>Cuscuta </it>using sequences of the nuclear ribosomal internal transcribed spacer and plastid <it>rps2</it>, <it>rbcL </it>and <it>matK </it>from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus <it>Cuscuta </it>is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with <it>rbcL </it>exhibiting even higher levels of purifying selection in <it>Cuscuta </it>than photosynthetic relatives. Nuclear genome size is highly variable within <it>Cuscuta</it>, particularly within subgenus <it>Grammica</it>, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.</p> <p>Conclusion</p> <p>Some morphological characters traditionally used to define major taxonomic splits within <it>Cuscuta </it>are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of <it>Cuscuta </it>retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.</p

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates

    Get PDF
    Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense blooms, with harmful health and economic effects to humans. The proliferation mode is mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate blooms because in many species the fate of the planktonic zygotes (planozygotes) is the formation of resistant cysts in the seabed (encystment). Nevertheless, recent research has shown that individually isolated planozygotes in the lab can enter other routes besides encystment, a behavior of which the relevance has not been explored at the population level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In Situ Hybridization (FISH), we followed DNA content and nuclear changes in a population of the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results first show that planozygotes behave like a population with an “encystment-independent” division cycle, which is light-controlled and follows the same Light:Dark (L:D) pattern as the cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction of the planozygotes formed and was restricted to a period of strongly limited nutrient conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step meiosis. However, the diel and morphological division pattern of the planozygote division also suggests mitosis, which would imply that this species is not haplontic, as previously considered, but biphasic, because individuals could undergo mitotic divisions in both the sexual (diploid) and the asexual (haploid) phases. We also report incomplete genome duplication processes. Our work calls for a reconsideration of the dogma of rare sex in dinoflagellates.Versión del edito

    A novel emergency department based prevention intervention program for people living with HIV: evaluation of early experiences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV prevention is increasingly focused on people living with HIV (PLWH) and the role of healthcare settings in prevention. Emergency Departments (EDs) frequently care for PLWH, but do not typically endorse a prevention mission. We conducted a pilot exploratory evaluation of the first reported ED program to address the prevention needs of PLWH.</p> <p>Methods</p> <p>This retrospective observational cohort evaluation reviewed program records to describe the first six months of participants and programmatic operation. Trained counselors provided a risk assessment and counseling intervention combined with three linkage interventions: i) linkage to health care, ii) linkage to case management, and iii) linkage to partner counseling and referral.</p> <p>Results</p> <p>Of 81 self-identified PLWH who were approached, 55 initially agreed to participate. Of those completing risk assessment, 17/53 (32%, 95 CI 20% to 46%) reported unprotected anal/vaginal intercourse or needle sharing in the past six months with a partner presumed to be HIV negative. Counseling was provided to 52/53 (98%). For those requesting services, 11/15 (73%) were linked to healthcare, 4/23 (17%) were coordinated with case management, and 1/4 (25%) completed partner counseling and referral.</p> <p>Conclusion</p> <p>Given base resources of trained counselors, it was feasible to implement a program to address the prevention needs for persons living with HIV in an urban ED. ED patients with HIV often have unmet needs which might be addressed by improved linkage with existing community resources. Healthcare and prevention barriers for PLWH may be attenuated if EDs were to incorporate CDC recommended prevention measures for healthcare providers.</p
    • …
    corecore