88 research outputs found

    HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer

    Get PDF
    Type II endometrial cancers (uterine serous papillary and clear cell histologies) represent rare but highly aggressive variants of endometrial cancer (EC). HER2 and EGFR may be differentially expressed in type II EC. Here, we evaluate the clinical role of HER2 and EGFR in a large cohort of surgically staged patients with type II (nonendometrioid) EC and compare the findings with those seen in a representative cohort of type I (endometrioid) EC. In this study HER2 gene amplification was studied by fluorescence in situ hybridisation (FISH) and EGFR expression by immunohistochemistry. Tissue microarrays were constructed from 279 patients with EC (145 patients with type I and 134 patients with type II EC). All patients were completely surgically staged and long-term clinical follow up was available for 258 patients. The rate of HER2 gene amplification was significantly higher in type II EC compared with type I EC (17 vs 1%, P<0.001). HER2 gene amplification was detected in 17 and 16% of the cases with uterine serous papillary and clear cell type histology, respectively. In contrast, EGFR expression was significantly lower in type II compared with type I EC (34 vs 46%, P=0.041). EGFR expression but not HER2 gene amplification was significantly associated with poor overall survival in patients with type II EC, (EGFR, median survival 20 vs 33 months, P=0.028; HER2, median survival 18 vs 29 months, P=0.113) and EGFR expression retained prognostic independence when adjusting for histology, stage, grade, and age (EGFR, P=0.0197; HER2, P=0.7855). We conclude that assessment of HER2 gene amplification and/or EGFR expression may help to select type II EC patients who could benefit from therapeutic strategies targeting both HER2 and EGFR

    Development of a core outcome set for idiopathic clubfoot management.

    Get PDF
    AIMS: This study aims to define a set of core outcomes (COS) to allow consistent reporting in order to compare results and assist in treatment decisions for idiopathic clubfoot. METHODS: A list of outcomes will be obtained in a three-stage process from the literature and from key stakeholders (patients, parents, surgeons, and healthcare professionals). Important outcomes for patients and parents will be collected from a group of children with idiopathic clubfoot and their parents through questionnaires and interviews. The outcomes identified during this process will be combined with the list of outcomes previously obtained from a systematic review, with each outcome assigned to one of the five core areas defined by the Outcome Measures Recommended for use in Randomized Clinical Trials (OMERACT). This stage will be followed by a two round Delphi survey aimed at key stakeholders in the management of idiopathic clubfoot. The final outcomes list obtained will then be discussed in a consensus meeting of representative key stakeholders. CONCLUSION: The inconsistency in outcomes reporting in studies investigating idiopathic clubfoot has made it difficult to define the success rate of treatments and to compare findings between studies. The development of a COS seeks to define a minimum standard set of outcomes to collect in all future clinical trials for this condition, to facilitate comparisons between studies and to aid decisions in treatment. Cite this article: Bone Jt Open 2021;2(4):255-260

    A modified Delphi study of screening for fetal alcohol spectrum disorders in Australia

    Get PDF
    Background: There is little reliable information on the prevalence of fetal alcohol spectrum disorders (FASD) in Australia and no coordinated national approach to facilitate case detection. The aim of this study was to identify health professionals’ perceptions about screening for FASD in Australia. Method: A modified Delphi process was used to assess perceptions of the need for, and the process of, screening for FASD in Australia. We recruited a panel of 130 Australian health professionals with experience or expertise in FASD screening or diagnosis. A systematic review of the literature was used to develop Likert statements on screening coverage, components and assessment methods which were administered using an online survey over two survey rounds. Results: Of the panel members surveyed, 95 (73%) responded to the questions on screening in the first survey round and, of these, 81 (85%) responded to the second round. Following two rounds there was consensus agreement on the need for targeted screening at birth (76%) and in childhood (84%). Participants did not reach consensus agreement on the need for universal screening at birth (55%) or in childhood (40%). Support for targeted screening was linked to perceived constraints on service provision and the need to examine the performance, costs and benefits of screening. For targeted screening of high risk groups, we found highest agreement for siblings of known cases of FASD (96%) and children of mothers attending alcohol treatment services (93%). Participants agreed that screening for FASD primarily requires assessment of prenatal alcohol exposure at birth (86%) and in childhood (88%), and that a checklist is needed to identify the components of screening and criteria for referral at birth (84%) and in childhood (90%). Conclusions: There is an agreed need for targeted but not universal screening for FASD in Australia, and sufficient consensus among health professionals to warrant development and evaluation of standardised methods for targeted screening and referral in the Australian context. Participants emphasised the need for locally-appropriate, evidence-based approaches to facilitate case detection, and the importance of ensuring that screening and referral programs are supported by adequate diagnostic and management capacity

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.

    No full text
    DNA double-strand breaks (DSBs) with protein covalently attached to 5â€Č strand termini are formed by Spo11 to initiate meiotic recombination1,2. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal has been unclear3. We show here that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3â€Č-OH. Surprisingly, two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step—significantly earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs
    • 

    corecore