
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2001 Wirtschaftsinformatik

September 2001

Preference XPATH: A Query Language for E-
Commerce
Werner Kießling
University of Augsburg, kiessling@informatik.uni-augsburg.de

Bernd Hafenrichter
University of Augsburg, hafenrichter@informatik.uni-augsburg.de

Stefan Fischer
University of Augsburg, fischer@informatik.uni-augsburg.de

Stefan Holland
University of Augsburg, holland@informatik.uni-augsburg.de

Follow this and additional works at: http://aisel.aisnet.org/wi2001

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2001 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kießling, Werner; Hafenrichter, Bernd; Fischer, Stefan; and Holland, Stefan, "Preference XPATH: A Query Language for E-
Commerce" (2001). Wirtschaftsinformatik Proceedings 2001. 32.
http://aisel.aisnet.org/wi2001/32

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2001%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001?utm_source=aisel.aisnet.org%2Fwi2001%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2001%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001?utm_source=aisel.aisnet.org%2Fwi2001%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001/32?utm_source=aisel.aisnet.org%2Fwi2001%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Buhl, Hans Ulrich, u.a. (Hg.) 2001. Information Age Economy; 5. Internationale Tagung
Wirtschaftsinformatik 2001. Heidelberg: Physica-Verlag

ISBN: 3-7908-1427-X

© Physica-Verlag Heidelberg 2001

Preference XPATH:
A Query Language for E-Commerce

Werner Kießling, Bernd Hafenrichter, Stefan Fischer,
Stefan Holland
University of Augsburg

Abstract: – We present a new XML-based search technology that enables users to
formulate complex customer or vendor preferences, which typically occur within
e-commerce applications. Preferences are modeled in a natural way by partial
orders. Since our semantics of multi-attribute preferences implements the Pareto-
optimality principle, Preference XPATH queries avoid both the unwanted "empty-
result"-effect and the flooding-effect with lots of irrelevant query results. If perfect
matches are not available best-possible alternatives are found instead. We have
extended the XML query language XPATH by the capability to formulate prefer-
ences as soft selection conditions. As our extensions are fully compatible with the
XPATH standard, both hard and soft selection conditions become now available
to any XML-based e-commerce application. Several e-shopping examples show
how easy and elegant it is to transform customer wishes into Preference XPATH
queries. Our prototype implementation is smoothly integrated with the XML data-
base system Tamino of Software AG. Moreover, we show how Preference XPATH
can be used within the XML query language QUILT. It even merges with XML
style sheets (XSLT) and the XML pointer language (XPointer). Thus with Prefer-
ence XPATH powerful personalized search engines and match-making processes
for B2C and B2B can be implemented completely inside the XML framework.

1 Introduction

In e-commerce XML [BPSM00] has become a very important standard for stor-
ing, presenting or exchanging data. XML documents can be classified into text-
oriented or data-oriented documents. Text-oriented documents are usually text
mixed with markup to point out the structure of the underlying text [Robi99]. For
this document class information retrieval methods can be adopted to the needs of
XML. In [Fuhr00], e.g., an approach is described which extends the query lan-
guage XQL (see [RLS98]) for use in information retrieval. In data-oriented XML
documents XML is used as vendor independent interchange format between appli-
cations and seems to become a major standard for data exchange on the web
([ABS00]). XML can be used as an integrated view on different kinds of data

428 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

sources. For this document class attribute search methods that can deal with cus-
tomer and vendor preferences of e-commerce applications must be supported. Ba-
sically exist three main approaches for attribute search:

- The naive way of translating each preference into a hard selection condition.

- Translation of preferences into soft selection conditions and application of
some ranked query model, using numerical scores and some weighted combi-
nation functions.

- Translation of preferences into soft selection conditions, modeling preferences
qualitatively, e.g. as partial orders.

In practice, mixtures between hard and soft selection conditions always occur and
should be supported as well. As experienced with the commercial product Prefer-
ence SQL [Data99], partial orders are a good foundation for an e-commerce query
language. Hence we shall adopt this promising approach and will show how to
transfer it from an SQL environment into the XML realm.

In section 2 we recapture the Preference SQL approach by explaining how to
model preferences as partial orders. Section 3 describes the design and syntax of
our Preference XPATH query language and includes some characteristic examples
from B2C e-shopping. In section 4 we present a smooth way to implement Prefer-
ence XPATH as an extension to an existing XPATH system like, e.g., the XML-
database Tamino from Software AG. How Preference XPATH can be mixed with
other XML-languages like XSL and QUILT is the topic of section 5. Finally, in
section 6 we give a summary and outlook of our work.

2 Preference Modeling for E-Commerce

Now we describe the basic idea of modeling preferences as partial orders and their
underlying theory. Partial orders (i.e. reflexive, anti-symmetric and transitive bi-
nary relations on a given set of objects) are known to be compatible with relational
and deductive database technology ([KKTG95]). In [KiGü94] it was already
shown, how declarative query languages can accommodate partial orders to ex-
press user-definable preferences. Since then this idea was carried over to the
commercial product Preference SQL [Data99] which is a development tool for
personalized search engines in e-commerce applications. Here we will adapt these
ideas to the XML environment of XPATH. In Preference SQL each preference is
modeled as a partial order. For the first version of Preference XPATH we have
realized roughly the same modeling capabilities as for Preference SQL. Further
extensions of Preference XPATH, which are possible due to the richer data model
of XML compared to standard SQL, will be addressed in the summary section.

429 Preference XPATH:A Query Language for E-Commerce

Partial orders model semantic relationships of the type “I like A more than B”,
hence being of qualitative nature. This kind of expressing preferences is familiar
to everybody - not only to technical specialists, juggling with numerical scores
and weights. For this very reason we consider it as an appropriate way to express
preferences for personalized product searches or match-makings in B2C or B2B.
Preferences are distinguished into base preferences and combined preferences.

2.1 Base Preferences

A base preference is a partial order 〈V,� 〉 based on a set V of values of one par-
ticular data type. In this paper we restrict ourselves to the atomic XPATH data
types String , Boolean and Number. Base preferences themselves are either
explicitly definable by the user or they can be pre-defined.

2.1.1 User-Definable Explicit Preference

Let's assume Julia wants to buy compact discs at an e-shop. Her decision depends
(among other things) on her personal preferences among music categories of the
CD’s available. Her preference is expressed as explicitly listed partial order as
shown in figure 1 (an arrow representing a better-worse relationship).

classic

jazz

comedy

pop dance

opera

blues

rock

Figure 1 : Base preference as a used-definable explicit partial order

Thus Julia prefers classic and opera music most. If this perfect choice is not avail-
able, she prefers jazz or blues next. Comedy and rock are appropriate if none of
the mentioned categories are available. In the worst case none of the preferred
categories are available. Only then other CD’s would qualify.

2.1.2 Predefined Base Preferences

Explicit preferences are a powerful means to specify preferences in finite domains.
However, in many situations this can become very tedious. Therefore a set of pre-
defined base preferences will be supplied, all of which can be described by partial
orders. From the experiences gained with Preference SQL in typical e-commerce

430 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

domains like Internet portals for flight booking, car sales, real estate brokerage
and many more, the subsequent choice was found as very appropriate.

• “Around” Preference

Suppose Julia wants to buy a car, the price should be around $10.000. It is
unlikely that she finds an exact match, but there may be a lot of cars that come
very close to this value. The “around” preference is used if an exact value is not a
must, alternatively closest matches are acceptable. Values closer to the exact
match are better than others.

• “Interval” Preference

Julia wants to buy a book within a price range of $10 up to $20. An “interval”
preference rates all such books as equally good, books outside this range are con-
sidered worse. Analogously to the "around" preference, books outside but very
close to the interval borders are better than those farther away. As special cases,
one-sided intervals are supported (i.e., one interval boundary may be unspecified).

• “Extremal” Preference

Michael wants to buy a book, preferring the cheapest one. In terms of our prefer-
ence model this means minimizing the price attribute. “Extremal” preferences are
used to minimize or maximize an attribute. Values closer to the extremal value are
preferable to those farther away.

• “Positive” Preference

This time Julia wants to buy a car, preferring the colors red and blue. If cars with
either of these colors are in stock, they will be offered to Julia. Otherwise cars
with different colors are an alternative choice. This type of preference is called
“positive” preference. Any value in the positive set is rated better than the rest.

• “Negative” Preference

“ Negative” preferences behave opposite to “positive” preferences. Each value not
contained in the negative set is preferred. If Julia wanted to buy a car and disliked
the colors magenta and cyan, cars with a different color are preferable.

Additionally we support so-called “ pos/neg” preferences and “pos/pos” prefer-
ences, combining the properties of “positive” and “negative” preferences.

2.2 Combination of Preferences

In practice preferences and purchase decisions are rarely 1-dimensional, but much
more complex in general. To construct more complex preferences, base prefer-
ences can be combined by two principal methods: prioritization and cumulation.

431 Preference XPATH:A Query Language for E-Commerce

2.2.1 Cumulation of Preferences

Cumulation treats several preferences on different attributes as equally important:
Object x is better than object y, if x is better than y according to at least one pref-
erence and at least equally good with respect to the other preferences.

This corresponds to the well-known Pareto optimality principle, which has been
applied and studied extensively in particular for multi-attribute decision problems
(see e.g. [KeRa76]).

More formally, let's assume the partial orders 〈X i, � i〉, 1 ≤ i ≤ n, n ≥ 2. Cumulation
is defined as the coordinate-wise order of the cartesian product X = X1 × ... × Xn.
Let x = (x1,...,xn), y = (y1,...,yn) ∈ X :

 x > y ⇔ ∃i ∈ 1, ..., n: xi >i yi ∧ (∀j ≠ i: xj � j yj)

Cumulation is known to be a partial order itself (see [DaPr90, p. 18]).

Assume that Jutta is looking for a car. Ideally, it should display the following
equally important characteristics: to be one year old, to be a BMW and to be a
roadster. Thus Jutta’s preference translates into a cumulation of three proper base
preferences. The Pareto principle guarantees that exactly the set of best matching
cars is found. Obviously, an existing perfect match (a one year old BMW roadster)
would dominate all other cars. If not available best alternatives would be searched
for Jutta automatically. Thus the Pareto-optimality semantics for multi-attribute
preferences avoids the often occurring and embarrassing “empty-result” effect of
many Internet search engines, if no exact matches are available. Moreover, it also
avoids the annoying flooding effect with a lot of irrelevant results, because worse
objects (i.e. object that are subsumed by better ones) are filtered out on the fly.

2.2.2 Prioritization of Preferences

Prioritization treats preference p1 as more important than preference p2, which in
turn is more important than p3, etc. , up to preference pn:

- Object x is better than object y, if x is better than y according to p1.

- If x and y are equivalent according to p1, then p2 will decide which one is bet-
ter, etc.

More formally, let's assume the partial orders 〈X i, � i〉, 1 ≤ i ≤ n, n ≥ 2. Prioritiza-
tion is defined like a lexicographic order of strings of the cartesian product X = X1
× ... × Xn. Let x = (x1,...,xn), y = (y1,...,yn) ∈ X:

x > y ⇔ ∃ i ∈ 1, ..., n: (∀k = 1 ... i-1 : xk ∼k yk) ∧ xi > yi

Hereby ∼k denotes equivalent objects correlated to be equally important in the
partial order 〈Xk, � k〉. Again, prioritization forms a partial order (see [DaPr90, p.

432 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

19]). Therefore cumulation and prioritization are construction operators for com-
plex preferences that can even be applied orthogonally.

By example let's assume that Michael searches for a book. For him the most im-
portant attributes are author and title. Less important he wants to spend as little
money as possible. Prioritization can be used to express this situation by cumu-
lating the author and title preferences as most important preference p1, followed by
an "extremal" preference p2.

3 Design of Preference XPATH

The primary construct of XPATH is an expression (see [ClDe99] for details). The
result of an expression can be objects of the types Nodeset , Boolean , Number
or String . The type Nodeset is a set of nodes that can be, e.g., XML-element
or XML-attribute. For a complete enumeration of the possible type of nodes see
[Cowa00]. As shown before, preferences are computed over a set of values based
on a partial order. So the object type Nodeset is the proper starting point within
XPATH for the integration of preferences.

3.1 Syntax of Preference XPATH

As specified in [ClDe99] the non-terminal production LocationPath returns
an object of type Nodeset . A LocationPath consists of one or more Loca-
tionStep’ s. The result of each LocationStep is used as input for the next
LocationStep . A single LocationStep is defined as follows:

LocationStep : axis nodetest (predicate)*

The three constituents of a LocationStep are:

• an axis , which specifies the tree relationship between the nodes selected by
the location step and context node,

• a nodetest , which specifies the node type and expanded-name of the nodes
selected by the location step, and

• zero or more predicate’s , which use arbitrary expressions for further re-
finements of nodes selected by the location step.

Preferences can be regarded as special kind of soft filter expressions. They take a
set of values and refine this set by dropping the non-maximum elements. We de-
cided to enhance XPATH by the introduction of a second type of predicate,
namely a preference . To delimit a hard selection (i.e. predicate) XPATH

433 Preference XPATH:A Query Language for E-Commerce

uses the symbols ‘[‘ and ‘]‘. In contrast, for soft selections (i.e. preference) we
introduce ‘#[’ and ‘]#’. Now the production

LocationStep : axis nodetest predicate*

in the current XPATH standard is rewritten as follows:

LocationStep : axis nodetest (predicate|preference) *
preference : '#[' prioritization | cumulation ']#'
prioritization : base_preference ('prior' 'to'
 base_preference)*
cumulation : base_preference ('and'
 base_preference)*
base_preference : named_pref | unnamed_pref
named_pref : name '(' expr ')'
unnamed_pref : '(' expr ')' pref_part
pref_part : around | extremal | interval| pos_neg
 | positive | negative | pos_pos
around : 'around' number
extremal : 'maximal' | 'minimal'
interval : 'between' number 'and' number
pos_pos : 'in' LiteralList 'or' LiteralList
positive : 'in' LiteralList
negative : 'not' 'in' LiteralList
pos_neg : 'in' LiteralList 'not' 'in'
 LiteralList
LiteralList : '(' '"'token'"'(',' '"'token'"')* ')'

Every LocationStep is composed of zero or more hard filter predicates or soft
preferences. The result set of one predicate or preference becomes the
input of the next predicate or preference . A preference itself is ei-
ther a cumulation or prioritization. Both consist of base preferences. Every base
preference is definable using a named or an unnamed syntax. Both use a standard
XPATH expression (expr; see [ClDe99] for details) to calculate their input ar-
guments. Named preferences named_pref are assumed to be defined and
stored within a preference repository. They are referenced using a unique identi-
fier (name). On the other hand, unnamed preferences unnamed_pref are de-
fined within the Preference XPATH query itself.

As stated in the definition of LocationStep there is now a choice between
predicate or preference to express a hard or soft selection condition, re-
spectively. Because base preferences use a XPATH query (expr) to select the
related nodes within the input node, Preference XPATH fits extremely well into
the overall design of XPATH. This completes the presentation of the syntax of
Preference XPATH. A specification of its formal semantics is, however, beyond
the scope of this paper. For the interested reader let us give a very short sketch:

434 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

Since each preference is a partial order, the theory of subsumption under partial
orders in deductive databases is applicable [KKTG95]. From the model-theoretic
point of view query results are subsumption models in the sense of [KKTG95],
which define the declarative semantics. An equivalent operational semantics is
gained by applying fixpoint theory with subsumption. A query result contains ex-
actly all maximal elements of the given partial order.

3.2 Sample Preference XPATH Queries

We will exemplify the ease of use of Preference XPATH in a typical B2C e-shop-
ping scenario for used cars. The following part of a DTD defines the structure of
the our sample XML database.

<!ELEMENT CARS (CAR)*>
<!ELEMENT CAR EMPTY>
<!ATTLIST CAR
 ident ID #REQUIRED
 price CDATA #IMPLIED
 mileage CDATA #IMPLIED
 horsepower CDATA #IMPLIED
 fuel_economy CDATA #IMPLIED
 color CDATA #IMPLIED>

Most attributes are rather obvious. Ident is used to identify each car exactly.
Fuel_economy expresses how far you can get with a fixed amount of fuel;
higher values are better. Mileage gets for lower values.

Query 1: Michael wishes a vehicle. It must be a car and should be maximum en-
ergy efficient, and equally important, it should have maximum horse-
power.

Michael’s preference straightforwardly translates into cumulation of two "extre-
mal" preferences.

/CARS/CAR #[(@fuel_economy) maximal and
 (@horsepower) maximal]#

[Q1]

Query 2: Julia wishes a vehicle, too. Again, it must be a car. But she prefers the
colors black and white. Next important is the price that should be less
than $10.000. After this pre-selection she prefers a minimal mileage.

Here prioritization applies with a "positive"-preference on color first and an "ex-
tremal"-preference on price second. The third preference is applied sequentially to
this result.

/CARS/CAR #[(@color) in ("black","white")
 prior to (@price) up to 10000]#
 #[(@milage)minimal]#

[Q2]

435 Preference XPATH:A Query Language for E-Commerce

After these linguistic examples let’s do some query evaluation. We want to pose
queries to the following XML-database:

<CAR ident="Kangaroo" fuel_economy="45" color="red" />
<CAR ident="Dog" fuel_economy="35" color="red"/>
<CAR ident="Frog" fuel_economy="100" color="blue"/>
<CAR ident="Shark" fuel_economy="55" color="black"/ >
<CAR ident="Cat" fuel_economy="50" color="white"/>

Query 3: Kathy wishes a vehicle. It must be a car. She prefers red or black
color, and equally important to her is a fuel_economy of around 50.

/CARS/CAR #[(@color) in ("red","black") and
 (@fuel_economy) around 50]#

[Q3]

[Q3] uses cumulation to express a multi-attribute decision on color and
fuel_economy. Since a perfect match is not available here, the cars “Kangoroo”,
“Shark” and “Cat” are retrieved as best-possible alternatives.

Query 4: George wants a vehicle. It must be a car. George prefers red or blue
color, and equally important to him is a maximal fuel_economy.

/CARS/CAR #[(@color) in ("red","blue") and
 (@fuel_economy) maximal]#

[Q4]

[Q4] finds a perfect match: Both color and fuel_economy are maximal for
ident=”Frog”.

In this section we have solely shown examples of customer preferences. In reality
vendors of course have their preferences, too. Both customer and vendor prefer-
ences of e-commerce applications can be modeled with partial orders, they can
appear even simultaneously in a single Preference XPATH query.

4 Implementation of Preference XPATH

4.1 Rewriting Approach

We pursue a pre-processor approach to achieve a smooth integration, such that the
query evaluation can happen entirely within an underlying XPATH database. To
this end a Preference XPATH query is rewritten into an equivalent XPATH query
using a special XPATH function, the so-called “PREFERENCE” function. This
mechanism is based on the EBNF-rules 15, 19 and 20 of the XPATH-specifica-
tion: Rule [EBNF 19] defines a PathExpr that is either a LocationPath or
a filter expression (FilterExpr). A filter expression, as stated in rule [EBNF
20] , can be used to construct a function call [EBNF 15]. These two facts enable

436 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

us to rewrite every path expression into the equivalent function composition of
LocationStep 's. For example, the LocationStep

/SHOP/COMPACTDISC[@TITLE="BEST"] can be rewritten as
id(id(/SHOP)/COMPACTDISC)[@TITLE="BEST"].

The function id is defined as identity function id(x)=x . For our purposes we
have implemented a special XPATH-function called “PREFERENCE“. Its input
arguments are a Nodeset and a reference to a prepared preference statement.
The input Nodeset is filtered by the preference , the result containing all
maximum elements. In this way the query

/SHOP/MUSIC/COMPACTDISC [@ARTIST="Enya"]
 #[(count(./TITLE)) more than 10]#

can be rewritten as:

PREFERENCE(/SHOP/MUSIC/COMPACTDISC[@ARTIST="Enya"] ,
 "(count(./TITLE)) more than 10")

Each Preference XPATH query can be rewritten using this technique. The
“PREFERENCE” function itself has two input arguments, an input Nodeset and
a preference statement. Optimizations for soft selections under our Pareto seman-
tics can be encapsulated within the “PREFERENCE”-function. Since currently the
expressive power of Preference XPATH is equivalent to Preference SQL, all im-
plemented and efficient optimization algorithms of Preference SQL are transfer-
able from the SQL environment to the XML setting. These algorithms, which are
currently undisclosed, are beyond the scope of this paper. To give a brief idea, an
efficient subsumption operator is required eliminating subsumed elements on the
fly. Optimization heuristics like "push selection" known from SQL-databases must
be generalized to "push preference", etc.

4.2 The TAMINO Prototype

Next we will discuss the prototype implementation of Preference XPATH based
on the commercial database Tamino [Soft01] from Software AG. Tamino is a na-
tive XML database, supporting the query language XPATH. Tamino can be en-
hanced by so called “server extensions“. They allow the creation of user-defined
functions for the use within XPATH-expressions. Thus Tamino can easily be ex-
tended by adding different query functions to the server. As application interface
Tamino provides an http interface for query processing which is implemented as
an extension of the Apache web server.

437 Preference XPATH:A Query Language for E-Commerce

Query rewriting

Tamino WWW-Interface

Preference XPATH Servlet

Repository

XML
Database

X-Machine

Preference
Server Extension

Preference
XPATH-Query

Result Set

Apache
Web-Server

Tamino

Figure 2 : Preference XPATH prototype in Tamino

In figure 2 the overall architecture is shown. We introduce a new interface layer,
the “Preference XPATH-Servlet“. This servlet acts as a special kind of router,
guiding every user request to the Tamino interface. In case of a Preference
XPATH request, the query is analyzed, rewritten into pure XPATH as presented
above, then passed to Tamino and executed there by the “X-Machine“. For every
occurrence of the “PREFERENCE”-function the associated “Preference Server-
Extension“ is called. The computed result set is returned directly by the “X-Ma-
chine“ to the caller.

Of course, this architectural framework is not proprietary for Tamino. Instead, it
works with any XPATH engine. For example, as another prototype we have suc-
cessfully used the XPATH engine of XALAN from the Apache XML Project.

5 Preference XPATH for XSLT and QUILT
The benefits of Preference XPATH are not limited to pure XPATH-engines like
Tamino. Preference XPATH can be used in every application that employs
XPATH expressions. The following sections show by two case studies how Pref-
erence XPATH can be applied to XSLT [Clar99] and QUILT [RCF00], both using
XPATH expressions as an integral part.

5.1 Preference XPATH in XSLT

XSLT is a language for transforming XML documents into other XML docu-
ments. XSLT uses XPATH expressions to select related nodes when constructing
the result document. One example is the automatic content generation for queries
in e-shops. XSLT is used to transform XML source data into HTML output. This
process can be personalized with the usage of Preference XPATH. According to
the car example earlier a part of a sample style sheet may look like:

438 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

<xsl:apply-templates
select=" ./CAR #[(@horsepower) maximal and
 (@fuel_economy) maximal]#"/>

The statement xsl:apply-templates is used to select child nodes of the cur-
rent node. Here the computed results are CAR elements satisfying the given pref-
erence condition best-possible.

5.2 Preference XPATH in QUILT

QUILT is another popular XML query language. It pools ideas from different
query languages like XML-QL [DFFS98], XQL and XPATH. All these ideas had
an impact on the design of QUILT that uses XPATH expressions to compute
bindings of variables. Therefore it is possible to integrate Preference XPATH with
QUILT. We adapt an example from the QUILT specification (see [RCF00]), with
Preference XPATH expressions written in bold face:

<Result>(FOR $a IN DISTINCT
document("books.xml") //author
 #[(text()) in (" Krisham" ," Baker")
RETURN <BooksByAuthor>
 <Author> $a/lastname/text() </Author>
 (FOR $b IN document("books.xml")//book[author=$a]
 RETURN $b/title #[(text()) in (" SECRET") and
 (text()) in (" WORLD")]#)
</BooksByAuthor> SORTBY(Author))</Result>

This example searches for the preferred authors “Krisham” or “Baker”. The
RETURN statement of QUILT constructs new XML output from the selected
nodes. For each author element the corresponding last name is taken as result. The
statements containing FOR ... RETURN select all books of the current author, pre-
ferring books with a title containing the words “WORLD” and “SECRET”.

6 Conclusion and Outlook

We proposed a new personalized search technology for e-commerce applications
within the XPATH framework for XML. So far XPATH can only express hard
selection conditions which are rarely appropriate to express customer or vendor
wishes in B2C or B2B. Preference XPATH uses the partial order model of Prefer-
ence SQL to describe user preferences.

E-commerce applications can benefit a lot from our approach, because Preference
XPATH avoids both the infamous "empty result”-effect and the flooding effect

439 Preference XPATH:A Query Language for E-Commerce

with irrelevant results of many existing search engines or match-making agents.
Since we rely on the Pareto-optimality principle, the nearest match according to a
user preference is computed. Preference XPATH is a syntactic enhancement of
XPATH. Every Preference XPATH expression can be rewritten into an equivalent
XPATH expression. Therefore every application using XPATH as part of the un-
derlying implementation can benefit from our solution. We demonstrated the us-
age of Preference XPATH within XSLT and QUILT, which points a very prom-
ising way to personalize mobile content delivery. Since the XML pointer language
XPointer uses XPATH, Preference XPATH is available there, too.

Our next steps will cover the entire spectrum of the XML data model. In particular
we are investigating the extension of Preference XPATH to set-valued preferences
(see [LeKi99] for first results) and to structural preferences. We have to consider
performance issues and optimization techniques as well. In terms of applications
we will interface Preference XPATH with our speaking meta-search agent
COSIMA ([HFEK01]). Finally, a technological comparison of our preference
modeling approach with others (e.g. with case-based reasoning CBR) may be in-
teresting. Such a benchmark would have to consider not only issues of search pre-
cision and recall and of query performance, but many more like compatibility with
industry standards, duplication of data, expenditure for preference modeling, etc.

Acknowledgments

We thank Achim Leubner and Matthias Wagner for helpful discussions, and Soft-
ware AG for providing the Tamino system.

References

[ABS00] Abiteboul S., Buneman P., Suciu D., Data on the Web, Morgan Kaufmann Pub-
lishers, San Francisco, California, 2000.

[BPSM00] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E., Extensible markup lan-
guage (XML) 1.0, http://www.w3.org/TR/REC-xml, October 2000.

[Clar99] Clark James: XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/
1999/REC-xslt-19991116, November 1999.

[ClDe99] Clark J., DeRose S.: XML Path Language (XPath), http://www.w3.org/TR/1999/
REC-xpath-19991116, November 1999.

[Cowa00] Cowan J.: XML Information Set, http://www.w3.org/TR/2000/WD-xml-infoset-
20000726, July 2000.

440 W. Kießling, B. Hafenrichter, S. Fischer, S. Holland

[DaPr90] Davey, B.A.; Priestley, H.A.: Introduction to Lattices and Order, Cambridge Uni-
versity Press, April 1990.

[Data99] User Manual Preference SQL 1.3. Database Preference Software GmbH, 1999.

[DFFS98] Deutsch A., Fernandez M., Florescu D., Levy A., Suciu D.: XML-QL: A Query
Language for XML, http://www.w3.org/TR/1998/NOTE-xml-ql-19980819, August
1998.

[Fuhr00] Fuhr, Norbert: XIRQL An Extension of XQL for Information Retrieval, SIGIR
2000, http://www.haifa.il.ibm.com/sigir00-xml/final-papers/xirql.html .

[HFEK01] Stefan Holland, Stefan Fischer, Thorsten Ehm, Werner Kießling. Gaining Cus-
tomer Preferences from E-Shopping Log-Files. In proceedings 3rd Conference Infor-
mation Systems in Finance 2001, Augsburg, Germany.

[KeRa76] Keeney, Ralph L.; Raiffa, Howard: Decision with Multiple Objectives: Prefer-
ences and Tradeoffs. Wiley, April 1976.

[KiGü94] Kießling, Werner; Güntzer, Ulrich: Database reasoning – a deductive framework
for solving large and complex problems by means of subsumption. In 3rd Workshop on
Information Systems and Artificial Intelligence, Volume 777 of LNCS, pages 118-138,
Hamburg, Germany, February 1994.

[KKTG95] Köstler, Gerhard; Kießling, Werner; Thöne, Helmut; Güntzer, Ulrich: Fixpoint
Iteration with Subsumption in Deductive Databases, Journal of Intelligent Information
Systems, Vol. 4, pages 123 – 148, 1995.

[LeKi99] Leubner A., Kießling W: Personalized Nonlinear Ranking Using Full-text Prefer-
ences, ACM SIGIR '99, Workshop on Customised Information Delivery, Berkeley,
August 1999.

[RCF00] Robie J., Chamberlin D., Florescu D., QUILT: an XML query language
http://www.gca.org/papers/xmleurope2000/papers/s08-01.html, XML Europe, June
2000.

[RLS98] Robie J., Lapp J., Schach D.: XML Query Language, http://www.w3.org/TandS/
QL/QL98/pp/xql.html, September 1998

[Robi99] Robie Jonathan: The Tree Structure of XML Queries, http://www.w3.org/
1999/10/xquery-tree.html, October 1999.

[Soft01] Tamino, Software AG, www.softwareag.com/Tamino.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	September 2001

	Preference XPATH: A Query Language for E-Commerce
	Werner Kießling
	Bernd Hafenrichter
	Stefan Fischer
	Stefan Holland
	Recommended Citation

	37_wi-10-140_e1

