1,146 research outputs found

    Black Hole Entropy and the Dimensional Continuation of the Gauss-Bonnet Theorem

    Full text link
    The Euclidean black hole has topology 2×Sd2\Re^2 \times {\cal S}^{d-2}. It is shown that -in Einstein's theory- the deficit angle of a cusp at any point in 2\Re^2 and the area of the Sd2{\cal S}^{d-2} are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the Sd2{\cal S}^{d-2} there.These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension to the most general action yielding second order field equations for the metric in any spacetime dimension is given.Comment: 7 pages, RevTe

    Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy

    Full text link
    We consider a general, classical theory of gravity with arbitrary matter fields in nn dimensions, arising from a diffeomorphism invariant Lagrangian, \bL. We first show that \bL always can be written in a ``manifestly covariant" form. We then show that the symplectic potential current (n1)(n-1)-form, th\th, and the symplectic current (n1)(n-1)-form, \om, for the theory always can be globally defined in a covariant manner. Associated with any infinitesimal diffeomorphism is a Noether current (n1)(n-1)-form, \bJ, and corresponding Noether charge (n2)(n-2)-form, \bQ. We derive a general ``decomposition formula" for \bQ. Using this formula for the Noether charge, we prove that the first law of black hole mechanics holds for arbitrary perturbations of a stationary black hole. (For higher derivative theories, previous arguments had established this law only for stationary perturbations.) Finally, we propose a local, geometrical prescription for the entropy, SdynS_{dyn}, of a dynamical black hole. This prescription agrees with the Noether charge formula for stationary black holes and their perturbations, and is independent of all ambiguities associated with the choices of \bL, th\th, and \bQ. However, the issue of whether this dynamical entropy in general obeys a ``second law" of black hole mechanics remains open. In an appendix, we apply some of our results to theories with a nondynamical metric and also briefly develop the theory of stress-energy pseudotensors.Comment: 30 pages, LaTe

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    One-loop Renormalization of Black Hole Entropy Due to Non-minimally Coupled Matter

    Get PDF
    The quantum entanglement entropy of an eternal black hole is studied. We argue that the relevant Euclidean path integral is taken over fields defined on α\alpha-fold covering of the black hole instanton. The statement that divergences of the entropy are renormalized by renormalization of gravitational couplings in the effective action is proved for non-minimally coupled scalar matter. The relationship of entanglement and thermodynamical entropies is discussed.Comment: 17 pages, latex, no figure

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

    Get PDF
    Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al

    Analysis of the capacity of google trends to measure interest in conservation topics and the role of online news

    Get PDF
    With the continuous growth of internet usage, Google Trends has emerged as a source of information to investigate how social trends evolve over time. Knowing how the level of interest in conservation topics--approximated using Google search volume--varies over time can help support targeted conservation science communication. However, the evolution of search volume over time and the mechanisms that drive peaks in searches are poorly understood. We conducted time series analyses on Google search data from 2004 to 2013 to investigate: (i) whether interests in selected conservation topics have declined and (ii) the effect of news reporting and academic publishing on search volume. Although trends were sensitive to the term used as benchmark, we did not find that public interest towards conservation topics such as climate change, ecosystem services, deforestation, orangutan, invasive species and habitat loss was declining. We found, however, a robust downward trend for endangered species and an upward trend for ecosystem services. The quantity of news articles was related to patterns in Google search volume, whereas the number of research articles was not a good predictor but lagged behind Google search volume, indicating the role of news in the transfer of conservation science to the public

    Efficacy and Safety of Alirocumab in Individuals with Diabetes Mellitus:Pooled Analyses from Five Placebo-Controlled Phase 3 Studies

    Get PDF
    Introduction: Diabetes mellitus (DM) carries an elevated risk for cardiovascular disease. Here, we assessed alirocumab efficacy and safety in people with/without DM from five placebo-controlled phase 3 studies. Methods: Data from up to 78 weeks were analyzed in individuals on maximally tolerated background statin. In three studies, alirocumab 75 mg every 2 weeks (Q2W) was increased to 150 mg Q2W at week 12 if week 8 low-density lipoprotein cholesterol (LDL-C) was ≥ 70 mg/dL; two studies used alirocumab 150 mg Q2W throughout. The primary endpoint was percentage change in LDL-C from baseline to week 24. Results: In the alirocumab 150 mg pool (n = 2416), baseline LDL-C levels were 117.4 mg/dL (DM) and 130.6 mg/dL (without DM), and in the 75/150 mg pool (n = 1043) 112.8 mg/dL (DM) and 133.0 mg/dL (without DM). In the 150 mg Q2W group, week 24 LDL-C reductions from baseline were observed in persons with DM (− 59.9%; placebo, − 1.4%) and without DM (− 60.6%; placebo, + 1.5%); 77.7% (DM) and 76.8% (without DM) of subjects achieved LDL-C < 70 mg/dL. In the alirocumab 75/150 mg group, 26% (DM) and 36% (without DM) of subjects received dose increase. In this group, week 24 LDL-C levels changed from baseline by − 43.8% (DM; placebo, + 0.3%) and − 49.7% (without DM; placebo, + 5.1%); LDL-C < 70 mg/dL was achieved by 68.3% and 65.8% of individuals, respectively. At week 24, alirocumab was also associated with improved levels of other lipids. Adverse event rates were generally comparable in all groups (79.8–82.0%). Conclusions: Regardless of DM status, alirocumab significantly reduced LDL-C levels; safety was generally similar. Funding Sanofi and Regeneron Pharmaceuticals, Inc. Plain Language Summary Plain language summary available for this article. Electronic supplementary material The online version of this article (10.1007/s13300-018-0439-8) contains supplementary material, which is available to authorized users

    The Relationship Between Therapist Effects and Therapy Delivery Factors: Therapy Modality, Dosage, and Non-completion.

    Get PDF
    To consider the relationships between, therapist variability, therapy modality, therapeutic dose and therapy ending type and assess their effects on the variability of patient outcomes. Multilevel modeling was used to analyse a large sample of routinely collected data. Model residuals identified more and less effective therapists, controlling for case-mix. After controlling for case mix, 5.8 % of the variance in outcome was due to therapists. More sessions generally improved outcomes, by about half a point on the PHQ-9 for each additional session, while non-completion of therapy reduced the amount of pre-post change by six points. Therapy modality had little effect on outcome. Patient and service outcomes may be improved by greater focus on the variability between therapists and in keeping patients in therapy to completion

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom
    corecore