203 research outputs found
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.
ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F(1) structures
Tumor Necrosis Factor-α and Muc2 Mucin Play Major Roles in Disease Onset and Progression in Dextran Sodium Sulphate-Induced Colitis
The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC
Serum amyloid A (SAA): a novel biomarker for uterine serous papillary cancer
BACKGROUND: Uterine serous papillary carcinoma (USPC) is a biologically aggressive variant of endometrial cancer. We investigated
the expression of Serum Amyloid A (SAA) and evaluated its potential as a serum biomarker in USPC patients.
METHODS: SAA gene and protein expression levels were evaluated in USPC and normal endometrial tissues (NEC) by real-time PCR,
immunohistochemistry (IHC), flow cytometry and by a sensitive bead-based immunoassay. SAA concentration in 123 serum samples
from 51 healthy women, 42 women with benign diseases, and 30 USPC patients were also studied.
RESULTS: SAA gene expression levels were significantly higher in USPC when compared with NEC (mean copy number by
RT\u2013PCR\ubc162 vs 2.21; P\ubc0.0002). IHC revealed diffuse cytoplasmic SAA protein staining in USPC tissues. High intracellular levels
of SAA were identified in primary USPC cell lines evaluated by flow cytometry and SAA was found to be actively secreted in vitro.
SAA concentrations (mgml 1) had a median (95% CIs) of 6.0 (4.0\u20138.9) in normal healthy females and 6.0 (4.2\u20138.1) in patients with
benign disease (P\ubc0.92). In contrast, SAA values in the serum of USPC patients had a median (95% CI) of 15.6 (9.2\u201356.2),
significantly higher than those in the healthy group (P\ubc0.0005) and benign group (P\ubc0.0006). Receiver operating characteristics
(ROC) analysis of serum SAA to classify advanced- and early-stage USPC yielded an area under the ROC curve of 0.837
(P\ubc0.0024).
CONCLUSION: SAA is not only a liver-secreted protein but is also a USPC cell product. SAA may represent a novel biomarker for
USPC to assist in staging patients preoperatively, and to monitor early-disease recurrence and response to therapy
Elevated serum procollagen type III peptide in splanchnic and peripheral circulation of patients with inflammatory bowel disease submitted to surgery
BACKGROUND: In the hypothesis that the increased collagen metabolism in the intestinal wall of patients affected by inflammatory bowel disease (IBD) is reflected in the systemic circulation, we aimed the study to evaluate serum level of procollagen III peptide (PIIIP) in peripheral and splanchnic circulation by a commercial radioimmunoassay of patients with different histories of disease. METHODS: Twenty-seven patients, 17 with Crohn and 10 with ulcerative colitis submitted to surgery were studied. Blood samples were obtained before surgery from a peripheral vein and during surgery from the mesenteric vein draining the affected intestinal segment. Fifteen healthy age and sex matched subjects were studied to determine normal range for peripheral PIIIP. RESULTS: In IBD patients peripheral PIIIP level was significantly higher if compared with controls (5.0 ± 1.9 vs 2.7 ± 0.7 μg/l; p = 0.0001); splanchnic PIIIP level was 5.5 ± 2.6 μg/l showing a positive gradient between splanchnic and peripheral concentrations of PIIIP. No significant differences between groups nor correlations with patients' age and duration of disease were found. CONCLUSIONS: We provide evidence that the increased local collagen metabolism in active IBD is reflected also in the systemic circulation irrespective of the history of the disease, suggesting that PIIIP should be considered more appropiately as a marker of the activity phases of IBD
Effects of chronic inflammatory bowel diseases on left ventricular structure and function: a study protocol
BACKGROUND: Experimental evidences suggest an increased collagen deposition in inflammatory bowel diseases (IBD). In particular, large amounts of collagen type I, III and V have been described and correlated to the development of intestinal fibrotic lesions. No information has been available until now about the possible increased collagen deposition far from the main target organ. In the hypothesis that chronic inflammation and increased collagen metabolism are reflected also in the systemic circulation, we aimed this study to evaluate the effects on left ventricular wall structure by assessing splancnic and systemic collagen metabolism (procollagen III assay), deposition (ultrasonic tissue characterization), and cardiac function (echocardiography) in patients with different long standing history of IBD, before and after surgery. METHODS: Thirty patients affected by active IBD, 15 with Crohn and 15 with Ulcerative Colitis, submitted to surgery will be enrolled in the study in a double blind fashion. They will be studied before the surgical operation and 6, 12 months after surgery. A control group of 15 healthy age and gender-matched subjects will also be studied. At each interval blood samples will be collected in order to assess the collagen metabolism; a transthoracic echocardiogram will be recorded for the subsequent determination of cardiac function and collagen deposition. DISCUSSION: From this study protocol we expect additional information about the association between IBD and cardiovascular disorders; in particular to address the question if chronic inflammation, through the altered collagen metabolism, could affect left ventricular structure and function in a manner directly related to the estimated duration of the disease
Expression of Nestin by Neural Cells in the Adult Rat and Human Brain
Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs) exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions
Microviridae Goes Temperate: Microvirus-Related Proviruses Reside in the Genomes of Bacteroidetes
The Microviridae comprises icosahedral lytic viruses with circular single-stranded DNA genomes. The family is divided into two distinct groups based on genome characteristics and virion structure. Viruses infecting enterobacteria belong to the genus Microvirus, whereas those infecting obligate parasitic bacteria, such as Chlamydia, Spiroplasma and Bdellovibrio, are classified into a subfamily, the Gokushovirinae. Recent metagenomic studies suggest that members of the Microviridae might also play an important role in marine environments. In this study we present the identification and characterization of Microviridae-related prophages integrated in the genomes of species of the Bacteroidetes, a phylum not previously known to be associated with microviruses. Searches against metagenomic databases revealed the presence of highly similar sequences in the human gut. This is the first report indicating that viruses of the Microviridae lysogenize their hosts. Absence of associated integrase-coding genes and apparent recombination with dif-like sequences suggests that Bacteroidetes-associated microviruses are likely to rely on the cellular chromosome dimer resolution machinery. Phylogenetic analysis of the putative major capsid proteins places the identified proviruses into a group separate from the previously characterized microviruses and gokushoviruses, suggesting that the genetic diversity and host range of bacteriophages in the family Microviridae is wider than currently appreciated
Gene expression fingerprint of uterine serous papillary carcinoma: identification of novel molecular markers for uterine serous cancer diagnosis and therapy
Uterine serous papillary cancer (USPC) represents a rare but highly aggressive variant of endometrial cancer, the most common gynecologic tumour in women. We used oligonucleotide microarrays that interrogate the expression of some 10 000 known genes to profile 10 highly purified primary USPC cultures and five normal endometrial cells (NEC). We report that unsupervised analysis of mRNA fingerprints readily distinguished USPC from normal endometrial epithelial cells and identified 139 and 390 genes that exhibited >5-fold upregulation and downregulation, respectively, in primary USPC when compared to NEC. Many of the genes upregulated in USPC were found to represent adhesion molecules, secreted proteins and oncogenes, such as L1 cell adhesion molecule, claudin-3 and claudin-4, kallikrein 6 (protease M) and kallikrein 10 (NES1), interleukin-6 and c-erbB2. Downregulated genes in USPC included SEMACAP3, ras homolog gene family, member I (ARHI), and differentially downregulated in ovarian carcinoma gene 1. Quantitative RT–PCR was used to validate differences in gene expression between USPC and NEC for several of these genes. Owing to its potential as a novel therapeutic marker, expression of the high-affinity epithelial receptor for Clostridium perfringens enterotoxin (CPE) claudin-4 was further validated through immunohistochemical analysis of formalin-fixed paraffin-embedded specimens from which the primary USPC cultures were obtained, as well as an independent set of archival USPC specimens. Finally, the sensitivity of primary USPC to the administration of scalar doses of CPE in vitro was also demonstrated. Our results highlight the novel molecular features of USPC and provide a foundation for the development of new type-specific therapies against this highly aggressive variant of endometrial cancer
Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible
- …
