1,930 research outputs found
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
Light Stop Decay in the MSSM with Minimal Flavour Violation
In supersymmetric scenarios with a light stop particle and a
small mass difference to the lightest supersymmetric particle (LSP) assumed to
be the lightest neutralino, the flavour changing neutral current decay
can be the dominant decay channel and can
exceed the four-body stop decay for certain parameter values. In the framework
of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing
long stop lifetimes. Stop decay length measurements at the LHC can then be
exploited to test models with minimal flavour breaking through Standard Model
Yukawa couplings. The decay width has been given some time ago by an
approximate formula, which takes into account the leading logarithms of the MFV
scale. In this paper we calculate the exact one-loop decay width in the
framework of MFV. The comparison with the approximate result exhibits
deviations of the order of 10% for large MFV scales due to the neglected
non-logarithmic terms in the approximate decay formula. The difference in the
branching ratios is negligible. The large logarithms have to be resummed. The
resummation is performed by the solution of the renormalization group
equations. The comparison of the exact one-loop result and the tree level
flavour changing neutral current decay, which incorporates the resummed
logarithms, demonstrates that the resummation effects are important and should
be taken into account.Comment: 29 page
A Hybrid Higgs
We construct composite Higgs models admitting a weakly coupled Seiberg dual
description. We focus on the possibility that only the up-type Higgs is an
elementary field, while the down-type Higgs arises as a composite hadron. The
model, based on a confining SQCD theory, breaks supersymmetry and electroweak
symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu
problem and explains the smallness of the bottom and tau masses compared to the
top mass. The proposal is then applied to a class of models where the same
confining dynamics is used to generate the Standard Model flavor hierarchy by
quark and lepton compositeness. This provides a unified framework for flavor,
supersymmetry breaking and electroweak physics. The weakly coupled dual is used
to explicitly compute the MSSM parameters in terms of a few microscopic
couplings, giving interesting relations between the electroweak and soft
parameters. The RG evolution down to the TeV scale is obtained and salient
phenomenological predictions of this class of "single-sector" models are
discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added,
v3: JHEP versio
Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?
Due to the limited statistics so far accumulated in the Higgs boson search at
the LHC, the Higgs boson property has not yet been tightly constrained and it
is still allowed for the Higgs boson to decay invisibly to dark matter with a
sizable branching ratio. In this work, we examine the Higgs decay to neutralino
dark matter in low energy SUSY by considering three different models: the
minimal supersymmetric standard model (MSSM), the next-to-minimal
supersymmetric standard models (NMSSM) and the nearly minimal supersymmetric
standard model (nMSSM). Under current experimental constraints at 2-sigma level
(including the muon g-2 and the dark matter relic density), we scan over the
parameter space of each model. Then in the allowed parameter space we calculate
the branching ratio of the SM-like Higgs decay to neutralino dark matter and
examine its observability at the LHC by considering three production channels:
the weak boson fusion VV->h, the associated production with a Z-boson pp->hZ+X
or a pair of top quarks pp->htt_bar+X. We find that in the MSSM such a decay is
far below the detectable level; while in both the NMSSM and nMSSM the decay
branching ratio can be large enough to be observable at the LHC.Comment: Version in JHE
A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM
Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume
a SM-like Higgs with the mass 123-127 GeV and study its implication in low
energy SUSY by comparing the MSSM and NMSSM. We consider various experimental
constraints at 2-sigma level (including the muon g-2 and the dark matter relic
density) and perform a comprehensive scan over the parameter space of each
model. Then in the parameter space which is allowed by current experimental
constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the
properties of the sensitive parameters (like the top squark mass and the
trilinear coupling A_t) and calculate the rates of the di-photon signal and the
VV^* (V=W,Z) signals at the LHC. Our typical findings are: (i) In the MSSM the
top squark and A_t must be large and thus incur some fine-tuning, which can be
much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to
enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction,
while in the NMSSM the di-photon rate can be readily enhanced in several ways;
(iii) In the MSSM the signal rates of pp -> h -> VV^* at the LHC are never
enhanced compared with their SM predictions, while in the NMSSM they may get
enhanced significantly; (iv) A large part of the parameter space so far
survived will be soon covered by the expected XENON100(2012) sensitivity
(especially for the NMSSM).Comment: Version in JHEP (refs added
Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general
two-Higgs-doublet model results in the absence of tree-level flavour-changing
neutral currents. In addition to the usual fermion masses and mixings, the
aligned Yukawa structure only contains three complex parameters, which are
potential new sources of CP violation. For particular values of these three
parameters all known specific implementations of the model based on discrete
Z_2 symmetries are recovered. One of the most distinctive features of the
two-Higgs-doublet model is the presence of a charged scalar. In this work, we
discuss its main phenomenological consequences in flavour-changing processes at
low energies and derive the corresponding constraints on the parameters of the
aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP.
References added. Discussion slightly extended. Conclusions unchange
Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals
If all strongly interacting sparticles (the squarks and the gluinos) in an
unconstrained minimal supersymmetric standard model (MSSM) are heavier than the
corresponding mass lower limits in the minimal supergravity (mSUGRA) model,
obtained by the current LHC experiments, then the existing data allow a variety
of electroweak (EW) sectors with light sparticles yielding dark matter (DM)
relic density allowed by the WMAP data. Some of the sparticles may lie just
above the existing lower bounds from LEP and lead to many novel DM producing
mechanisms not common in mSUGRA. This is illustrated by revisiting the above
squark-gluino mass limits obtained by the ATLAS Collaboration, with an
unconstrained EW sector with masses not correlated with the strong sector.
Using their selection criteria and the corresponding cross section limits, we
find at the generator level using Pythia, that the changes in the mass limits,
if any, are by at most 10-12% in most scenarios. In some cases, however, the
relaxation of the gluino mass limits are larger (). If a subset of
the strongly interacting sparticles in an unconstrained MSSM are within the
reach of the LHC, then signals sensitive to the EW sector may be obtained. This
is illustrated by simulating the \etslash, , and \etslash signals in i) the light stop scenario and ii) the light
stop-gluino scenario with various light EW sectors allowed by the WMAP data.
Some of the more general models may be realized with non-universal scalar and
gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to
appear in JHE
Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms
The propensity of segmental duplications (SDs) to promote genomic instability is of increasing interest since their involvement in numerous human genomic diseases and cancers was revealed. However, the mechanism(s) responsible for their appearance remain mostly speculative. Here, we show that in budding yeast, replication accidents, which are most likely transformed into broken forks, play a causal role in the formation of SDs. The Pol32 subunit of the major replicative polymerase Polδ is required for all SD formation, demonstrating that SDs result from untimely DNA synthesis rather than from unequal crossing-over. Although Pol32 is known to be required for classical (Rad52-dependant) break-induced replication, only half of the SDs can be attributed to this mechanism. The remaining SDs are generated through a Rad52-independent mechanism of template switching between microsatellites or microhomologous sequences. This new mechanism, named microhomology/microsatellite-induced replication (MMIR), differs from all known DNA double-strand break repair pathways, as MMIR-mediated duplications still occur in the combined absence of homologous recombination, microhomology-mediated, and nonhomologous end joining machineries. The interplay between these two replication-based pathways explains important features of higher eukaryotic genomes, such as the strong, but not strict, association between SDs and transposable elements, as well as the frequent formation of oncogenic fusion genes generating protein innovations at SD junctions
- …